File size: 10,224 Bytes
1fea0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from fastapi import FastAPI, File, UploadFile, Form, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
from decord import VideoReader, cpu
import numpy as np
import asyncio

app = FastAPI()

# Global variables to store the model components
model = None
tokenizer = None
image_processor = None
loading_progress = 0

def _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, video_framerate=1, s=None, e=None):
    if s is None:
        start_time, end_time = None, None
    else:
        start_time = int(s)
        end_time = int(e)
        start_time = start_time if start_time >= 0. else 0.
        end_time = end_time if end_time >= 0. else 0.
        if start_time > end_time:
            start_time, end_time = end_time, start_time
        elif start_time == end_time:
            end_time = start_time + 1

    if os.path.exists(video_path):
        vreader = VideoReader(video_path, ctx=cpu(0))
    else:
        print(video_path)
        raise FileNotFoundError

    fps = vreader.get_avg_fps()
    f_start = 0 if start_time is None else int(start_time * fps)
    f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
    num_frames = f_end - f_start + 1
    if num_frames > 0:
        sample_fps = int(video_framerate)
        t_stride = int(round(float(fps) / sample_fps))

        all_pos = list(range(f_start, f_end + 1, t_stride))
        if len(all_pos) > max_frames:
            sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
        else:
            sample_pos = all_pos

        patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]

        patch_images = torch.stack([image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images])
        slice_len = patch_images.shape[0]

        return patch_images, slice_len
    else:
        print("video path: {} error.")

@app.on_event("startup")
async def load_model():
    global model, tokenizer, image_processor, loading_progress

    disable_torch_init()
    model_path = "/home/manish/Chat-UniVi/model/Chat-UniVi"
    model_name = "ChatUniVi"

    loading_progress = 10
    await asyncio.sleep(1)  # Simulating progress step

    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
    loading_progress = 50
    await asyncio.sleep(1)  # Simulating progress step

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
    if mm_use_im_patch_token:
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))
    loading_progress = 70
    await asyncio.sleep(1)  # Simulating progress step

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model()
    image_processor = vision_tower.image_processor
    loading_progress = 100

@app.post("/process")
async def process_video(question: str = Form(...), video: UploadFile = File(...)):
    try:
        video_path = f"temp_{video.filename}"
        with open(video_path, "wb") as f:
            f.write(video.file.read())

        max_frames = 100
        video_framerate = 1

        video_frames, slice_len = _get_rawvideo_dec(video_path, image_processor, max_frames=max_frames, video_framerate=video_framerate)

        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN * slice_len + DEFAULT_IM_END_TOKEN + '\n' + question
        else:
            qs = DEFAULT_IMAGE_TOKEN * slice_len + '\n' + question

        conv = conv_templates["simple"].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=video_frames.half().cuda(),
                do_sample=True,
                temperature=0.2,
                top_p=None,
                num_beams=1,
                output_scores=True,
                return_dict_in_generate=True,
                max_new_tokens=1024,
                use_cache=True,
                stopping_criteria=[stopping_criteria]
            )

        output_ids = output_ids.sequences
        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        return {"answer": outputs}

    except Exception as e:
        return {"error": str(e)}

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    global loading_progress
    try:
        while loading_progress < 100:
            await websocket.send_json({"progress": loading_progress})
            await asyncio.sleep(1)
        await websocket.send_json({"progress": loading_progress, "status": "Model Loaded"})
    except WebSocketDisconnect:
        print("WebSocket disconnected")
    finally:
        await websocket.close()

### HTML Page

@app.get("/", response_class=HTMLResponse)
async def get():
    return """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Video Question Answering</title>
        <style>
            body {
                font-family: Arial, sans-serif;
                margin: 40px;
            }
            .container {
                max-width: 600px;
                margin: 0 auto;
            }
            .form-group {
                margin-bottom: 20px;
            }
            .form-group label {
                display: block;
                margin-bottom: 5px;
            }
            .form-group input[type="text"] {
                width: 100%;
                padding: 8px;
                box-sizing: border-box;
            }
            .form-group input[type="file"] {
                width: 100%;
                padding: 8px;
                box-sizing: border-box;
            }
            .form-group button {
                padding: 10px 15px;
                background-color: #007bff;
                color: #fff;
                border: none;
                cursor: pointer;
            }
            .form-group button:hover {
                background-color: #0056b3;
            }
            .result {
                margin-top: 20px;
                padding: 10px;
                border: 1px solid #ddd;
                background-color: #f9f9f9;
            }
            .progress {
                margin-top: 20px;
                padding: 10px;
                border: 1px solid #ddd;
                background-color: #f9f9f9;
            }
            #progress-bar {
                width: 0;
                height: 20px;
                background-color: #4caf50;
            }
        </style>
    </head>
    <body>
        <div class="container">
            <h1>Video Question Answering</h1>
            <div class="progress">
                <div id="progress-bar"></div>
            </div>
            <div class="form-group">
                <label for="question">Question:</label>
                <input type="text" id="question" name="question">
            </div>
            <div class="form-group">
                <label for="video">Upload Video:</label>
                <input type="file" id="video" name="video">
            </div>
            <div class="form-group">
                <button onclick="submitForm()">Submit</button>
            </div>
            <div class="result" id="result"></div>
        </div>
        <script>
            const progressBar = document.getElementById('progress-bar');

            const ws = new WebSocket(`ws://${window.location.host}/ws`);
            ws.onmessage = function(event) {
                const data = JSON.parse(event.data);
                if (data.progress) {
                    progressBar.style.width = data.progress + '%';
                    if (data.progress == 100) {
                        ws.close();
                    }
                }
                if (data.status) {
                    progressBar.innerText = data.status;
                }
            };

            async function submitForm() {
                const question = document.getElementById('question').value;
                const video = document.getElementById('video').files[0];

                const formData = new FormData();
                formData.append('question', question);
                formData.append('video', video);

                const response = await fetch('/process', {
                    method: 'POST',
                    body: formData
                });

                const result = await response.json();
                document.getElementById('result').innerText = result.answer || result.error;
            }
        </script>
    </body>
    </html>
    """