File size: 4,946 Bytes
f8a0cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import sys
import torch
from models import SynthesizerTrn
import utils
try:
import onnxruntime as ort
except ImportError:
print('Please install onnxruntime!')
sys.exit(1)
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad \
else tensor.detach().numpy()
def get_args():
parser = argparse.ArgumentParser(description='export onnx model')
parser.add_argument('--checkpoint', required=True, help='checkpoint')
parser.add_argument('--cfg', required=True, help='config file')
parser.add_argument('--onnx_model', required=True, help='onnx model name')
# parser.add_argument('--phone_table',
# required=True,
# help='input phone dict')
# parser.add_argument('--speaker_table', default=None, help='speaker table')
# parser.add_argument("--speaker_num", required=True,
# type=int, help="speaker num")
parser.add_argument(
'--providers',
required=False,
default='CPUExecutionProvider',
choices=['CUDAExecutionProvider', 'CPUExecutionProvider'],
help='the model to send request to')
args = parser.parse_args()
return args
def get_data_from_cfg(cfg_path: str):
assert os.path.isfile(cfg_path)
with open(cfg_path, 'r') as f:
data = json.load(f)
symbols = data["symbols"]
speaker_num = data["data"]["n_speakers"]
return len(symbols), speaker_num
def main():
args = get_args()
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
hps = utils.get_hparams_from_file(args.cfg)
# with open(args.phone_table) as p_f:
# phone_num = len(p_f.readlines()) + 1
# num_speakers = 1
# if args.speaker_table is not None:
# num_speakers = len(open(args.speaker_table).readlines()) + 1
phone_num, num_speakers = get_data_from_cfg(args.cfg)
net_g = SynthesizerTrn(phone_num,
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=num_speakers,
**hps.model)
utils.load_checkpoint(args.checkpoint, net_g, None)
net_g.forward = net_g.export_forward
net_g.eval()
seq = torch.randint(low=0, high=phone_num, size=(1, 10), dtype=torch.long)
seq_len = torch.IntTensor([seq.size(1)]).long()
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
# 参考 https://github.com/gbxh/genshinTTS
scales = torch.FloatTensor([0.667, 1.0, 0.8])
# make triton dynamic shape happy
scales = scales.unsqueeze(0)
sid = torch.IntTensor([0]).long()
dummy_input = (seq, seq_len, scales, sid)
torch.onnx.export(model=net_g,
args=dummy_input,
f=args.onnx_model,
input_names=['input', 'input_lengths', 'scales', 'sid'],
output_names=['output'],
dynamic_axes={
'input': {
0: 'batch',
1: 'phonemes'
},
'input_lengths': {
0: 'batch'
},
'scales': {
0: 'batch'
},
'sid': {
0: 'batch'
},
'output': {
0: 'batch',
1: 'audio',
2: 'audio_length'
}
},
opset_version=13,
verbose=False)
# Verify onnx precision
torch_output = net_g(seq, seq_len, scales, sid)
providers = [args.providers]
ort_sess = ort.InferenceSession(args.onnx_model, providers=providers)
ort_inputs = {
'input': to_numpy(seq),
'input_lengths': to_numpy(seq_len),
'scales': to_numpy(scales),
'sid': to_numpy(sid),
}
onnx_output = ort_sess.run(None, ort_inputs)
if __name__ == '__main__':
main()
|