Mahiruoshi
commited on
Commit
•
f8a0cc5
1
Parent(s):
14e5e89
Upload 68 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- README.md +10 -0
- app.py +251 -0
- attentions.py +392 -0
- checkpoints/Default/config.json +35 -0
- checkpoints/Default/model.onnx +3 -0
- checkpoints/info.json +221 -0
- cleaners/JapaneseCleaner.dll +3 -0
- cleaners/char.bin +3 -0
- cleaners/matrix.bin +3 -0
- cleaners/sys.dic +3 -0
- cleaners/unk.dic +0 -0
- commons.py +161 -0
- data_utils.py +307 -0
- export_onnx.py +140 -0
- losses.py +58 -0
- main.py +255 -0
- mel_processing.py +137 -0
- models.py +672 -0
- modules.py +469 -0
- moe/config.json +25 -0
- moe/configuration_chatglm.py +92 -0
- moe/modeling_chatglm.py +1157 -0
- moe/pytorch_model.bin.index.json +375 -0
- moe/quantization.py +187 -0
- moe/temp1.wav +0 -0
- moe/temp2.wav +0 -0
- moe/tokenization_chatglm.py +345 -0
- moe/tokenizer_config.json +19 -0
- output.wav +0 -0
- requirements.txt +24 -0
- text/LICENSE +19 -0
- text/__init__.py +56 -0
- text/__pycache__/__init__.cpython-37.pyc +0 -0
- text/__pycache__/__init__.cpython-38.pyc +0 -0
- text/__pycache__/__init__.cpython-39.pyc +0 -0
- text/__pycache__/cleaners.cpython-37.pyc +0 -0
- text/__pycache__/cleaners.cpython-38.pyc +0 -0
- text/__pycache__/cleaners.cpython-39.pyc +0 -0
- text/__pycache__/english.cpython-37.pyc +0 -0
- text/__pycache__/english.cpython-38.pyc +0 -0
- text/__pycache__/english.cpython-39.pyc +0 -0
- text/__pycache__/japanese.cpython-37.pyc +0 -0
- text/__pycache__/japanese.cpython-38.pyc +0 -0
- text/__pycache__/japanese.cpython-39.pyc +0 -0
- text/__pycache__/korean.cpython-37.pyc +0 -0
- text/__pycache__/mandarin.cpython-37.pyc +0 -0
- text/__pycache__/mandarin.cpython-38.pyc +0 -0
- text/__pycache__/mandarin.cpython-39.pyc +0 -0
- text/__pycache__/sanskrit.cpython-37.pyc +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
cleaners/JapaneseCleaner.dll filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cleaners/sys.dic filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,13 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Chatbot With Vits
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.23.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
from text import text_to_sequence
|
6 |
+
import numpy as np
|
7 |
+
from scipy.io import wavfile
|
8 |
+
import torch
|
9 |
+
import json
|
10 |
+
import commons
|
11 |
+
import utils
|
12 |
+
import sys
|
13 |
+
import pathlib
|
14 |
+
import onnxruntime as ort
|
15 |
+
import gradio as gr
|
16 |
+
import argparse
|
17 |
+
import time
|
18 |
+
import os
|
19 |
+
import io
|
20 |
+
from scipy.io.wavfile import write
|
21 |
+
from flask import Flask, request
|
22 |
+
from threading import Thread
|
23 |
+
import openai
|
24 |
+
import requests
|
25 |
+
class VitsGradio:
|
26 |
+
def __init__(self):
|
27 |
+
self.lan = ["中文","日文","自动"]
|
28 |
+
self.chatapi = ["gpt-3.5-turbo","gpt3"]
|
29 |
+
self.modelPaths = []
|
30 |
+
for root,dirs,files in os.walk("checkpoints"):
|
31 |
+
for dir in dirs:
|
32 |
+
self.modelPaths.append(dir)
|
33 |
+
with gr.Blocks() as self.Vits:
|
34 |
+
with gr.Tab("调试用"):
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column():
|
39 |
+
self.text = gr.TextArea(label="Text", value="你好")
|
40 |
+
with gr.Accordion(label="测试api", open=False):
|
41 |
+
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟")
|
42 |
+
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=")
|
43 |
+
butto = gr.Button("测试从网页端获取文本")
|
44 |
+
btnVC = gr.Button("测试tts+对话程序")
|
45 |
+
with gr.Column():
|
46 |
+
output2 = gr.TextArea(label="回复")
|
47 |
+
output1 = gr.Audio(label="采样率22050")
|
48 |
+
output3 = gr.outputs.File(label="44100hz: output.wav")
|
49 |
+
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3])
|
50 |
+
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2])
|
51 |
+
with gr.Tab("控制面板"):
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
with gr.Row():
|
55 |
+
with gr.Column():
|
56 |
+
self.api_input1 = gr.TextArea(label="输入api-key或ChATGLM模型的路径", value="https://platform.openai.com/account/api-keys")
|
57 |
+
with gr.Accordion(label="chatbot选择", open=False):
|
58 |
+
self.api_input2 = gr.Checkbox(value=True, label="采用gpt3.5")
|
59 |
+
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot")
|
60 |
+
self.local_chat2 = gr.Checkbox(value=True, label="是否量化")
|
61 |
+
res = gr.TextArea()
|
62 |
+
Botselection = gr.Button("聊天机器人选择")
|
63 |
+
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res])
|
64 |
+
self.input1 = gr.Dropdown(label = "vits模型加载", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
65 |
+
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
66 |
+
with gr.Column():
|
67 |
+
btnVC = gr.Button("Submit")
|
68 |
+
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(101)), value=0, interactive=True)
|
69 |
+
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
70 |
+
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
71 |
+
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
72 |
+
statusa = gr.TextArea()
|
73 |
+
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
|
74 |
+
|
75 |
+
def Simul(self,text,url_input):
|
76 |
+
web = url_input + text
|
77 |
+
res = requests.get(web)
|
78 |
+
music = res.content
|
79 |
+
with open('output.wav', 'wb') as code:
|
80 |
+
code.write(music)
|
81 |
+
file_path = "output.wav"
|
82 |
+
return web,file_path
|
83 |
+
|
84 |
+
|
85 |
+
def chatgpt(self,text):
|
86 |
+
self.messages.append({"role": "user", "content": text},)
|
87 |
+
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages)
|
88 |
+
reply = chat.choices[0].message.content
|
89 |
+
return reply
|
90 |
+
|
91 |
+
def ChATGLM(self,text):
|
92 |
+
if text == 'clear':
|
93 |
+
self.history = []
|
94 |
+
response, new_history = self.model.chat(self.tokenizer, text, self.history)
|
95 |
+
response = response.replace(" ",'').replace("\n",'.')
|
96 |
+
self.history = new_history
|
97 |
+
return response
|
98 |
+
|
99 |
+
def gpt3_chat(self,text):
|
100 |
+
call_name = "Waifu"
|
101 |
+
openai.api_key = args.key
|
102 |
+
identity = ""
|
103 |
+
start_sequence = '\n'+str(call_name)+':'
|
104 |
+
restart_sequence = "\nYou: "
|
105 |
+
if 1 == 1:
|
106 |
+
prompt0 = text #当期prompt
|
107 |
+
if text == 'quit':
|
108 |
+
return prompt0
|
109 |
+
prompt = identity + prompt0 + start_sequence
|
110 |
+
response = openai.Completion.create(
|
111 |
+
model="text-davinci-003",
|
112 |
+
prompt=prompt,
|
113 |
+
temperature=0.5,
|
114 |
+
max_tokens=1000,
|
115 |
+
top_p=1.0,
|
116 |
+
frequency_penalty=0.5,
|
117 |
+
presence_penalty=0.0,
|
118 |
+
stop=["\nYou:"]
|
119 |
+
)
|
120 |
+
return response['choices'][0]['text'].strip()
|
121 |
+
|
122 |
+
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2):
|
123 |
+
if local_chat1:
|
124 |
+
from transformers import AutoTokenizer, AutoModel
|
125 |
+
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True)
|
126 |
+
if local_chat2:
|
127 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().quantize(4).cuda()
|
128 |
+
else:
|
129 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True)
|
130 |
+
self.history = []
|
131 |
+
else:
|
132 |
+
self.messages = []
|
133 |
+
openai.api_key = api_input1
|
134 |
+
return "Finished"
|
135 |
+
|
136 |
+
def is_japanese(self,string):
|
137 |
+
for ch in string:
|
138 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
139 |
+
return True
|
140 |
+
return False
|
141 |
+
|
142 |
+
def is_english(self,string):
|
143 |
+
import re
|
144 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
145 |
+
if pattern.fullmatch(string):
|
146 |
+
return True
|
147 |
+
else:
|
148 |
+
return False
|
149 |
+
|
150 |
+
def get_symbols_from_json(self,path):
|
151 |
+
assert os.path.isfile(path)
|
152 |
+
with open(path, 'r') as f:
|
153 |
+
data = json.load(f)
|
154 |
+
return data['symbols']
|
155 |
+
|
156 |
+
def sle(self,language,text):
|
157 |
+
text = text.replace('\n','。').replace(' ',',')
|
158 |
+
if language == "中文":
|
159 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
160 |
+
return tts_input1
|
161 |
+
elif language == "自动":
|
162 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
163 |
+
return tts_input1
|
164 |
+
elif language == "日文":
|
165 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
166 |
+
return tts_input1
|
167 |
+
|
168 |
+
def get_text(self,text,hps_ms):
|
169 |
+
text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
|
170 |
+
if hps_ms.data.add_blank:
|
171 |
+
text_norm = commons.intersperse(text_norm, 0)
|
172 |
+
text_norm = torch.LongTensor(text_norm)
|
173 |
+
return text_norm
|
174 |
+
|
175 |
+
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
176 |
+
self.symbols = self.get_symbols_from_json(f"checkpoints/{path}/config.json")
|
177 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
178 |
+
phone_dict = {
|
179 |
+
symbol: i for i, symbol in enumerate(self.symbols)
|
180 |
+
}
|
181 |
+
self.ort_sess = ort.InferenceSession(f"checkpoints/{path}/model.onnx")
|
182 |
+
self.language = input2
|
183 |
+
self.speaker_id = input3
|
184 |
+
self.n_scale = n_scale
|
185 |
+
self.n_scale_w = n_scale_w
|
186 |
+
self.l_scale = l_scale
|
187 |
+
print(self.language,self.speaker_id,self.n_scale)
|
188 |
+
return 'success'
|
189 |
+
|
190 |
+
def tts_fn(self,text):
|
191 |
+
if self.local_chat1:
|
192 |
+
text = self.chatgpt(text)
|
193 |
+
elif self.api_input2:
|
194 |
+
text = self.ChATGLM(text)
|
195 |
+
else:
|
196 |
+
text = self.gpt3_chat(text)
|
197 |
+
print(text)
|
198 |
+
text =self.sle(self.language,text)
|
199 |
+
seq = text_to_sequence(text, cleaner_names=self.hps.data.text_cleaners)
|
200 |
+
if self.hps.data.add_blank:
|
201 |
+
seq = commons.intersperse(seq, 0)
|
202 |
+
with torch.no_grad():
|
203 |
+
x = np.array([seq], dtype=np.int64)
|
204 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
205 |
+
sid = np.array([self.speaker_id], dtype=np.int64)
|
206 |
+
scales = np.array([self.n_scale, self.n_scale_w, self.l_scale], dtype=np.float32)
|
207 |
+
scales.resize(1, 3)
|
208 |
+
ort_inputs = {
|
209 |
+
'input': x,
|
210 |
+
'input_lengths': x_len,
|
211 |
+
'scales': scales,
|
212 |
+
'sid': sid
|
213 |
+
}
|
214 |
+
t1 = time.time()
|
215 |
+
audio = np.squeeze(self.ort_sess.run(None, ort_inputs))
|
216 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
217 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
218 |
+
t2 = time.time()
|
219 |
+
spending_time = "推理时间:"+str(t2-t1)+"s"
|
220 |
+
print(spending_time)
|
221 |
+
bytes_wav = bytes()
|
222 |
+
byte_io = io.BytesIO(bytes_wav)
|
223 |
+
wavfile.write('moe/temp1.wav',self.hps.data.sampling_rate, audio.astype(np.int16))
|
224 |
+
cmd = 'ffmpeg -y -i ' + 'moe/temp1.wav' + ' -ar 44100 ' + 'moe/temp2.wav'
|
225 |
+
os.system(cmd)
|
226 |
+
return (self.hps.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','')
|
227 |
+
|
228 |
+
app = Flask(__name__)
|
229 |
+
print("开始部署")
|
230 |
+
grVits = VitsGradio()
|
231 |
+
|
232 |
+
@app.route('/chat')
|
233 |
+
def text_api():
|
234 |
+
message = request.args.get('Text','')
|
235 |
+
audio,text = grVits.tts_fn(message)
|
236 |
+
text = text.replace('[JA]','').replace('[ZH]','')
|
237 |
+
with open('moe/temp2.wav','rb') as bit:
|
238 |
+
wav_bytes = bit.read()
|
239 |
+
headers = {
|
240 |
+
'Content-Type': 'audio/wav',
|
241 |
+
'Text': text.encode('utf-8')}
|
242 |
+
return wav_bytes, 200, headers
|
243 |
+
|
244 |
+
def gradio_interface():
|
245 |
+
return grVits.Vits.launch()
|
246 |
+
|
247 |
+
if __name__ == '__main__':
|
248 |
+
api_thread = Thread(target=app.run, args=("0.0.0.0", 8080))
|
249 |
+
gradio_thread = Thread(target=gradio_interface)
|
250 |
+
api_thread.start()
|
251 |
+
gradio_thread.start()
|
attentions.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
from modules import LayerNorm
|
9 |
+
|
10 |
+
|
11 |
+
class Encoder(nn.Module):
|
12 |
+
def __init__(self,
|
13 |
+
hidden_channels,
|
14 |
+
filter_channels,
|
15 |
+
n_heads,
|
16 |
+
n_layers,
|
17 |
+
kernel_size=1,
|
18 |
+
p_dropout=0.,
|
19 |
+
window_size=4,
|
20 |
+
**kwargs):
|
21 |
+
super().__init__()
|
22 |
+
self.hidden_channels = hidden_channels
|
23 |
+
self.filter_channels = filter_channels
|
24 |
+
self.n_heads = n_heads
|
25 |
+
self.n_layers = n_layers
|
26 |
+
self.kernel_size = kernel_size
|
27 |
+
self.p_dropout = p_dropout
|
28 |
+
self.window_size = window_size
|
29 |
+
|
30 |
+
self.drop = nn.Dropout(p_dropout)
|
31 |
+
self.attn_layers = nn.ModuleList()
|
32 |
+
self.norm_layers_1 = nn.ModuleList()
|
33 |
+
self.ffn_layers = nn.ModuleList()
|
34 |
+
self.norm_layers_2 = nn.ModuleList()
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
self.attn_layers.append(
|
37 |
+
MultiHeadAttention(hidden_channels,
|
38 |
+
hidden_channels,
|
39 |
+
n_heads,
|
40 |
+
p_dropout=p_dropout,
|
41 |
+
window_size=window_size))
|
42 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
43 |
+
self.ffn_layers.append(
|
44 |
+
FFN(hidden_channels,
|
45 |
+
hidden_channels,
|
46 |
+
filter_channels,
|
47 |
+
kernel_size,
|
48 |
+
p_dropout=p_dropout))
|
49 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
50 |
+
|
51 |
+
def forward(self, x, x_mask):
|
52 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
53 |
+
x = x * x_mask
|
54 |
+
for i in range(self.n_layers):
|
55 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
56 |
+
y = self.drop(y)
|
57 |
+
x = self.norm_layers_1[i](x + y)
|
58 |
+
|
59 |
+
y = self.ffn_layers[i](x, x_mask)
|
60 |
+
y = self.drop(y)
|
61 |
+
x = self.norm_layers_2[i](x + y)
|
62 |
+
x = x * x_mask
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class Decoder(nn.Module):
|
67 |
+
def __init__(self,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size=1,
|
73 |
+
p_dropout=0.,
|
74 |
+
proximal_bias=False,
|
75 |
+
proximal_init=True,
|
76 |
+
**kwargs):
|
77 |
+
super().__init__()
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.proximal_bias = proximal_bias
|
85 |
+
self.proximal_init = proximal_init
|
86 |
+
|
87 |
+
self.drop = nn.Dropout(p_dropout)
|
88 |
+
self.self_attn_layers = nn.ModuleList()
|
89 |
+
self.norm_layers_0 = nn.ModuleList()
|
90 |
+
self.encdec_attn_layers = nn.ModuleList()
|
91 |
+
self.norm_layers_1 = nn.ModuleList()
|
92 |
+
self.ffn_layers = nn.ModuleList()
|
93 |
+
self.norm_layers_2 = nn.ModuleList()
|
94 |
+
for i in range(self.n_layers):
|
95 |
+
self.self_attn_layers.append(
|
96 |
+
MultiHeadAttention(hidden_channels,
|
97 |
+
hidden_channels,
|
98 |
+
n_heads,
|
99 |
+
p_dropout=p_dropout,
|
100 |
+
proximal_bias=proximal_bias,
|
101 |
+
proximal_init=proximal_init))
|
102 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
103 |
+
self.encdec_attn_layers.append(
|
104 |
+
MultiHeadAttention(hidden_channels,
|
105 |
+
hidden_channels,
|
106 |
+
n_heads,
|
107 |
+
p_dropout=p_dropout))
|
108 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
109 |
+
self.ffn_layers.append(
|
110 |
+
FFN(hidden_channels,
|
111 |
+
hidden_channels,
|
112 |
+
filter_channels,
|
113 |
+
kernel_size,
|
114 |
+
p_dropout=p_dropout,
|
115 |
+
causal=True))
|
116 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, h, h_mask):
|
119 |
+
"""
|
120 |
+
x: decoder input
|
121 |
+
h: encoder output
|
122 |
+
"""
|
123 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
124 |
+
device=x.device, dtype=x.dtype)
|
125 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
126 |
+
x = x * x_mask
|
127 |
+
for i in range(self.n_layers):
|
128 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
129 |
+
y = self.drop(y)
|
130 |
+
x = self.norm_layers_0[i](x + y)
|
131 |
+
|
132 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
133 |
+
y = self.drop(y)
|
134 |
+
x = self.norm_layers_1[i](x + y)
|
135 |
+
|
136 |
+
y = self.ffn_layers[i](x, x_mask)
|
137 |
+
y = self.drop(y)
|
138 |
+
x = self.norm_layers_2[i](x + y)
|
139 |
+
x = x * x_mask
|
140 |
+
return x
|
141 |
+
|
142 |
+
|
143 |
+
class MultiHeadAttention(nn.Module):
|
144 |
+
def __init__(self,
|
145 |
+
channels,
|
146 |
+
out_channels,
|
147 |
+
n_heads,
|
148 |
+
p_dropout=0.,
|
149 |
+
window_size=None,
|
150 |
+
heads_share=True,
|
151 |
+
block_length=None,
|
152 |
+
proximal_bias=False,
|
153 |
+
proximal_init=False):
|
154 |
+
super().__init__()
|
155 |
+
assert channels % n_heads == 0
|
156 |
+
|
157 |
+
self.channels = channels
|
158 |
+
self.out_channels = out_channels
|
159 |
+
self.n_heads = n_heads
|
160 |
+
self.p_dropout = p_dropout
|
161 |
+
self.window_size = window_size
|
162 |
+
self.heads_share = heads_share
|
163 |
+
self.block_length = block_length
|
164 |
+
self.proximal_bias = proximal_bias
|
165 |
+
self.proximal_init = proximal_init
|
166 |
+
self.attn = None
|
167 |
+
|
168 |
+
self.k_channels = channels // n_heads
|
169 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
170 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
171 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
172 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
173 |
+
self.drop = nn.Dropout(p_dropout)
|
174 |
+
|
175 |
+
if window_size is not None:
|
176 |
+
n_heads_rel = 1 if heads_share else n_heads
|
177 |
+
rel_stddev = self.k_channels**-0.5
|
178 |
+
self.emb_rel_k = nn.Parameter(
|
179 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
180 |
+
* rel_stddev)
|
181 |
+
self.emb_rel_v = nn.Parameter(
|
182 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
183 |
+
* rel_stddev)
|
184 |
+
|
185 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
186 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
187 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
188 |
+
if proximal_init:
|
189 |
+
with torch.no_grad():
|
190 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
191 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
192 |
+
|
193 |
+
def forward(self, x, c, attn_mask=None):
|
194 |
+
q = self.conv_q(x)
|
195 |
+
k = self.conv_k(c)
|
196 |
+
v = self.conv_v(c)
|
197 |
+
|
198 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
199 |
+
|
200 |
+
x = self.conv_o(x)
|
201 |
+
return x
|
202 |
+
|
203 |
+
def attention(self, query, key, value, mask=None):
|
204 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
205 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
206 |
+
query = query.view(b, self.n_heads, self.k_channels,
|
207 |
+
t_t).transpose(2, 3)
|
208 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
209 |
+
value = value.view(b, self.n_heads, self.k_channels,
|
210 |
+
t_s).transpose(2, 3)
|
211 |
+
|
212 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels),
|
213 |
+
key.transpose(-2, -1))
|
214 |
+
if self.window_size is not None:
|
215 |
+
msg = "Relative attention is only available for self-attention."
|
216 |
+
assert t_s == t_t, msg
|
217 |
+
key_relative_embeddings = self._get_relative_embeddings(
|
218 |
+
self.emb_rel_k, t_s)
|
219 |
+
rel_logits = self._matmul_with_relative_keys(
|
220 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings)
|
221 |
+
scores_local = self._relative_position_to_absolute_position(
|
222 |
+
rel_logits)
|
223 |
+
scores = scores + scores_local
|
224 |
+
if self.proximal_bias:
|
225 |
+
msg = "Proximal bias is only available for self-attention."
|
226 |
+
assert t_s == t_t, msg
|
227 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
228 |
+
device=scores.device, dtype=scores.dtype)
|
229 |
+
if mask is not None:
|
230 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
231 |
+
if self.block_length is not None:
|
232 |
+
msg = "Local attention is only available for self-attention."
|
233 |
+
assert t_s == t_t, msg
|
234 |
+
block_mask = torch.ones_like(scores).triu(
|
235 |
+
-self.block_length).tril(self.block_length)
|
236 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
237 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
238 |
+
p_attn = self.drop(p_attn)
|
239 |
+
output = torch.matmul(p_attn, value)
|
240 |
+
if self.window_size is not None:
|
241 |
+
relative_weights = self._absolute_position_to_relative_position(
|
242 |
+
p_attn)
|
243 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
244 |
+
self.emb_rel_v, t_s)
|
245 |
+
output = output + self._matmul_with_relative_values(
|
246 |
+
relative_weights, value_relative_embeddings)
|
247 |
+
output = output.transpose(2, 3).contiguous().view(
|
248 |
+
b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
249 |
+
return output, p_attn
|
250 |
+
|
251 |
+
def _matmul_with_relative_values(self, x, y):
|
252 |
+
"""
|
253 |
+
x: [b, h, l, m]
|
254 |
+
y: [h or 1, m, d]
|
255 |
+
ret: [b, h, l, d]
|
256 |
+
"""
|
257 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
258 |
+
return ret
|
259 |
+
|
260 |
+
def _matmul_with_relative_keys(self, x, y):
|
261 |
+
"""
|
262 |
+
x: [b, h, l, d]
|
263 |
+
y: [h or 1, m, d]
|
264 |
+
ret: [b, h, l, m]
|
265 |
+
"""
|
266 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
267 |
+
return ret
|
268 |
+
|
269 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
270 |
+
max_relative_position = 2 * self.window_size + 1
|
271 |
+
# Pad first before slice to avoid using cond ops.
|
272 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
273 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
274 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
275 |
+
if pad_length > 0:
|
276 |
+
padded_relative_embeddings = F.pad(
|
277 |
+
relative_embeddings,
|
278 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length],
|
279 |
+
[0, 0]]))
|
280 |
+
else:
|
281 |
+
padded_relative_embeddings = relative_embeddings
|
282 |
+
used_relative_embeddings = padded_relative_embeddings[:,
|
283 |
+
slice_start_position:
|
284 |
+
slice_end_position]
|
285 |
+
return used_relative_embeddings
|
286 |
+
|
287 |
+
def _relative_position_to_absolute_position(self, x):
|
288 |
+
"""
|
289 |
+
x: [b, h, l, 2*l-1]
|
290 |
+
ret: [b, h, l, l]
|
291 |
+
"""
|
292 |
+
batch, heads, length, _ = x.size()
|
293 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
294 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
295 |
+
1]]))
|
296 |
+
|
297 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
298 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
299 |
+
x_flat = F.pad(
|
300 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0,
|
301 |
+
length - 1]]))
|
302 |
+
|
303 |
+
# Reshape and slice out the padded elements.
|
304 |
+
x_final = x_flat.view([batch, heads, length + 1,
|
305 |
+
2 * length - 1])[:, :, :length, length - 1:]
|
306 |
+
return x_final
|
307 |
+
|
308 |
+
def _absolute_position_to_relative_position(self, x):
|
309 |
+
"""
|
310 |
+
x: [b, h, l, l]
|
311 |
+
ret: [b, h, l, 2*l-1]
|
312 |
+
"""
|
313 |
+
batch, heads, length, _ = x.size()
|
314 |
+
# padd along column
|
315 |
+
x = F.pad(
|
316 |
+
x,
|
317 |
+
commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
318 |
+
length - 1]]))
|
319 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
320 |
+
# add 0's in the beginning that will skew the elements after reshape
|
321 |
+
x_flat = F.pad(
|
322 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
323 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
324 |
+
return x_final
|
325 |
+
|
326 |
+
def _attention_bias_proximal(self, length):
|
327 |
+
"""Bias for self-attention to encourage attention to close positions.
|
328 |
+
Args:
|
329 |
+
length: an integer scalar.
|
330 |
+
Returns:
|
331 |
+
a Tensor with shape [1, 1, length, length]
|
332 |
+
"""
|
333 |
+
r = torch.arange(length, dtype=torch.float32)
|
334 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
335 |
+
return torch.unsqueeze(
|
336 |
+
torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
337 |
+
|
338 |
+
|
339 |
+
class FFN(nn.Module):
|
340 |
+
def __init__(self,
|
341 |
+
in_channels,
|
342 |
+
out_channels,
|
343 |
+
filter_channels,
|
344 |
+
kernel_size,
|
345 |
+
p_dropout=0.,
|
346 |
+
activation=None,
|
347 |
+
causal=False):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.out_channels = out_channels
|
351 |
+
self.filter_channels = filter_channels
|
352 |
+
self.kernel_size = kernel_size
|
353 |
+
self.p_dropout = p_dropout
|
354 |
+
self.activation = activation
|
355 |
+
self.causal = causal
|
356 |
+
|
357 |
+
if causal:
|
358 |
+
self.padding = self._causal_padding
|
359 |
+
else:
|
360 |
+
self.padding = self._same_padding
|
361 |
+
|
362 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
363 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
364 |
+
self.drop = nn.Dropout(p_dropout)
|
365 |
+
|
366 |
+
def forward(self, x, x_mask):
|
367 |
+
x = self.conv_1(self.padding(x * x_mask))
|
368 |
+
if self.activation == "gelu":
|
369 |
+
x = x * torch.sigmoid(1.702 * x)
|
370 |
+
else:
|
371 |
+
x = torch.relu(x)
|
372 |
+
x = self.drop(x)
|
373 |
+
x = self.conv_2(self.padding(x * x_mask))
|
374 |
+
return x * x_mask
|
375 |
+
|
376 |
+
def _causal_padding(self, x):
|
377 |
+
if self.kernel_size == 1:
|
378 |
+
return x
|
379 |
+
pad_l = self.kernel_size - 1
|
380 |
+
pad_r = 0
|
381 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
382 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
383 |
+
return x
|
384 |
+
|
385 |
+
def _same_padding(self, x):
|
386 |
+
if self.kernel_size == 1:
|
387 |
+
return x
|
388 |
+
pad_l = (self.kernel_size - 1) // 2
|
389 |
+
pad_r = self.kernel_size // 2
|
390 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
391 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
392 |
+
return x
|
checkpoints/Default/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"segment_size": 8192
|
4 |
+
},
|
5 |
+
"data": {
|
6 |
+
"text_cleaners":["zh_ja_mixture_cleaners"],
|
7 |
+
"max_wav_value": 32768.0,
|
8 |
+
"sampling_rate": 22050,
|
9 |
+
"filter_length": 1024,
|
10 |
+
"hop_length": 256,
|
11 |
+
"win_length": 1024,
|
12 |
+
"add_blank": true,
|
13 |
+
"n_speakers": 5
|
14 |
+
},
|
15 |
+
"model": {
|
16 |
+
"inter_channels": 192,
|
17 |
+
"hidden_channels": 192,
|
18 |
+
"filter_channels": 768,
|
19 |
+
"n_heads": 2,
|
20 |
+
"n_layers": 6,
|
21 |
+
"kernel_size": 3,
|
22 |
+
"p_dropout": 0.1,
|
23 |
+
"resblock": "1",
|
24 |
+
"resblock_kernel_sizes": [3,7,11],
|
25 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
26 |
+
"upsample_rates": [8,8,2,2],
|
27 |
+
"upsample_initial_channel": 512,
|
28 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
29 |
+
"n_layers_q": 3,
|
30 |
+
"use_spectral_norm": false,
|
31 |
+
"gin_channels": 256
|
32 |
+
},
|
33 |
+
"speakers": ["\u7dbe\u5730\u5be7\u3005", "\u5728\u539f\u4e03\u6d77", "\u5c0f\u8338", "\u5510\u4e50\u541f"],
|
34 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
35 |
+
}
|
checkpoints/Default/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ac210365de160dd5db134f9333525e4ff38426a6a24fcb73e24375b09bef15e
|
3 |
+
size 121090654
|
checkpoints/info.json
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Nijigasaki High School":{
|
3 |
+
"speakers":{
|
4 |
+
"高咲侑":{
|
5 |
+
"sid": 0,
|
6 |
+
"setting": "只选一个做不到啊",
|
7 |
+
"name": "高咲侑"
|
8 |
+
},
|
9 |
+
"歩夢":{
|
10 |
+
"sid": 1,
|
11 |
+
"setting": "只选一个做不到啊",
|
12 |
+
"name": "歩夢"
|
13 |
+
},
|
14 |
+
"かすみ":{
|
15 |
+
"sid": 2,
|
16 |
+
"setting": "只选一个做不到啊",
|
17 |
+
"name": "かすみ"
|
18 |
+
},
|
19 |
+
"しずく":{
|
20 |
+
"sid": 3,
|
21 |
+
"setting": "只选一个做不到啊",
|
22 |
+
"name": "しずく"
|
23 |
+
},
|
24 |
+
"果林":{
|
25 |
+
"sid": 4,
|
26 |
+
"setting": "只选一个做不到啊",
|
27 |
+
"name": "果林"
|
28 |
+
},
|
29 |
+
"愛":{
|
30 |
+
"sid": 5,
|
31 |
+
"setting": "只选一个做不到啊",
|
32 |
+
"name": "愛"
|
33 |
+
},
|
34 |
+
"せつ菜":{
|
35 |
+
"sid": 7,
|
36 |
+
"setting": "只选一个做不到啊",
|
37 |
+
"name": "せつ菜"
|
38 |
+
},
|
39 |
+
"エマ":{
|
40 |
+
"sid": 8,
|
41 |
+
"setting": "只选一个做不到啊",
|
42 |
+
"name": "エマ"
|
43 |
+
},
|
44 |
+
"璃奈":{
|
45 |
+
"sid": 9,
|
46 |
+
"setting": "只选一个做不到啊",
|
47 |
+
"name": "璃奈"
|
48 |
+
},
|
49 |
+
"栞子":{
|
50 |
+
"sid": 10,
|
51 |
+
"setting": "只选一个做不到啊",
|
52 |
+
"name": "栞子"
|
53 |
+
},
|
54 |
+
"ランジュ":{
|
55 |
+
"sid": 11,
|
56 |
+
"setting": "只选一个做不到啊",
|
57 |
+
"name": "ランジュ"
|
58 |
+
},
|
59 |
+
"ミア":{
|
60 |
+
"sid": 12,
|
61 |
+
"setting": "只选一个做不到啊",
|
62 |
+
"name": "ミア"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"checkpoint": "checkpoints/Nijigasaki/model.onnx"
|
66 |
+
},
|
67 |
+
"Seisho Music Academy":{
|
68 |
+
"speakers":{
|
69 |
+
"華恋":{
|
70 |
+
"sid": 21,
|
71 |
+
"setting": "只选一个做不到啊",
|
72 |
+
"name": "華恋"
|
73 |
+
},
|
74 |
+
"まひる":{
|
75 |
+
"sid": 22,
|
76 |
+
"setting": "只选一个做不到啊",
|
77 |
+
"name": "まひる"
|
78 |
+
},
|
79 |
+
"なな":{
|
80 |
+
"sid": 23,
|
81 |
+
"setting": "只选一个做不到啊",
|
82 |
+
"name": "なな"
|
83 |
+
},
|
84 |
+
"クロディーヌ":{
|
85 |
+
"sid": 24,
|
86 |
+
"setting": "只选一个做不到啊",
|
87 |
+
"name": "クロディーヌ"
|
88 |
+
},
|
89 |
+
"ひかり":{
|
90 |
+
"sid": 25,
|
91 |
+
"setting": "只选一个做不到啊",
|
92 |
+
"name": "ひかり"
|
93 |
+
},
|
94 |
+
"純那":{
|
95 |
+
"sid": 26,
|
96 |
+
"setting": "只选一个做不到啊",
|
97 |
+
"name": "純那"
|
98 |
+
},
|
99 |
+
"香子":{
|
100 |
+
"sid": 27,
|
101 |
+
"setting": "只选一个做不到啊",
|
102 |
+
"name": "香子"
|
103 |
+
},
|
104 |
+
"真矢":{
|
105 |
+
"sid": 28,
|
106 |
+
"setting": "只选一个做不到啊",
|
107 |
+
"name": "真矢"
|
108 |
+
},
|
109 |
+
"双葉":{
|
110 |
+
"sid": 29,
|
111 |
+
"setting": "只选一个做不到啊",
|
112 |
+
"name": "双葉"
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"checkpoint": "checkpoints/Starlight/model.onnx"
|
116 |
+
},
|
117 |
+
"Rinmeikan Girls School":{
|
118 |
+
"speakers":{
|
119 |
+
"珠緒":{
|
120 |
+
"sid": 37,
|
121 |
+
"setting": "只选一个做不到啊",
|
122 |
+
"name": "珠緒"
|
123 |
+
},
|
124 |
+
"塁":{
|
125 |
+
"sid": 36,
|
126 |
+
"setting": "只选一个做不到啊",
|
127 |
+
"name": "塁"
|
128 |
+
},
|
129 |
+
"ゆゆ子":{
|
130 |
+
"sid": 35,
|
131 |
+
"setting": "只选一个做不到啊",
|
132 |
+
"name": "ゆゆ子"
|
133 |
+
},
|
134 |
+
"いちえ":{
|
135 |
+
"sid": 34,
|
136 |
+
"setting": "只选一个做不到啊",
|
137 |
+
"name": "いちえ"
|
138 |
+
}
|
139 |
+
},
|
140 |
+
"checkpoint": "checkpoints/Starlight/model.onnx"
|
141 |
+
|
142 |
+
},
|
143 |
+
"Frontier School of Arts":{
|
144 |
+
"speakers":{
|
145 |
+
"あるる":{
|
146 |
+
"sid": 38,
|
147 |
+
"setting": "只选一个做不到啊",
|
148 |
+
"name": "あるる"
|
149 |
+
},
|
150 |
+
"ララフィン":{
|
151 |
+
"sid": 39,
|
152 |
+
"setting": "只选一个做不到啊",
|
153 |
+
"name": "ララフィン"
|
154 |
+
},
|
155 |
+
"美空":{
|
156 |
+
"sid": 40,
|
157 |
+
"setting": "只选一个做不到啊",
|
158 |
+
"name": "美空"
|
159 |
+
},
|
160 |
+
"静羽":{
|
161 |
+
"sid": 41,
|
162 |
+
"setting": "只选一个做不到啊",
|
163 |
+
"name": "静羽"
|
164 |
+
}
|
165 |
+
},
|
166 |
+
"checkpoint": "checkpoints/Nijigasaki/model.onnx"
|
167 |
+
|
168 |
+
},
|
169 |
+
"Siegfeld Institute of Music":{
|
170 |
+
"speakers":{
|
171 |
+
"ミチル":{
|
172 |
+
"sid": 30,
|
173 |
+
"setting": "只选一个做不到啊",
|
174 |
+
"name": "ミチル"
|
175 |
+
},
|
176 |
+
"メイファン":{
|
177 |
+
"sid": 31,
|
178 |
+
"setting": "只选一个做不到啊",
|
179 |
+
"name": "メイファン"
|
180 |
+
},
|
181 |
+
"やちよ":{
|
182 |
+
"sid": 32,
|
183 |
+
"setting": "只选一个做不到啊",
|
184 |
+
"name": "やちよ"
|
185 |
+
},
|
186 |
+
"晶":{
|
187 |
+
"sid": 33,
|
188 |
+
"setting": "只选一个做不到啊",
|
189 |
+
"name": "晶"
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"checkpoint": "checkpoints/Starlight/model.onnx"
|
193 |
+
|
194 |
+
},
|
195 |
+
"Youzusoft":{
|
196 |
+
"speakers":{
|
197 |
+
"宁宁":{
|
198 |
+
"sid": 0,
|
199 |
+
"setting": "只选一个做不到啊",
|
200 |
+
"name": "宁宁"
|
201 |
+
},
|
202 |
+
"在原七海":{
|
203 |
+
"sid": 1,
|
204 |
+
"setting": "只选一个做不到啊",
|
205 |
+
"name": "在原七海"
|
206 |
+
},
|
207 |
+
"小茸":{
|
208 |
+
"sid": 2,
|
209 |
+
"setting": "只选一个做不到啊",
|
210 |
+
"name": "小茸"
|
211 |
+
},
|
212 |
+
"唐乐吟":{
|
213 |
+
"sid": 3,
|
214 |
+
"setting": "只选一个做不到啊",
|
215 |
+
"name": "唐乐吟"
|
216 |
+
}
|
217 |
+
},
|
218 |
+
"checkpoint": "checkpoints/Default/model.onnx"
|
219 |
+
|
220 |
+
}
|
221 |
+
}
|
cleaners/JapaneseCleaner.dll
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a659eb68d12d4a88ef7dfde6086b9974cd4d43634f7e4bfe710d5537cdd61a75
|
3 |
+
size 3097600
|
cleaners/char.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:888ee94c5a8a7a26d24ab3f1b7155441351954fd51ea06b4a2f78bd742492b2f
|
3 |
+
size 262496
|
cleaners/matrix.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62fd16b4f64c851d5dc352ef0d5740c5fc83ddc7c203b2b0b1fc5271969a14ce
|
3 |
+
size 3792262
|
cleaners/sys.dic
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca57d9029691a70a5dfb99afc2844180256161d7130da65b1a867510e129b9a6
|
3 |
+
size 103073776
|
cleaners/unk.dic
ADDED
Binary file (5.69 kB). View file
|
|
commons.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def init_weights(m, mean=0.0, std=0.01):
|
8 |
+
classname = m.__class__.__name__
|
9 |
+
if classname.find("Conv") != -1:
|
10 |
+
m.weight.data.normal_(mean, std)
|
11 |
+
|
12 |
+
|
13 |
+
def get_padding(kernel_size, dilation=1):
|
14 |
+
return int((kernel_size * dilation - dilation) / 2)
|
15 |
+
|
16 |
+
|
17 |
+
def convert_pad_shape(pad_shape):
|
18 |
+
pad_shape = [item for sublist in reversed(pad_shape) for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += 0.5 * (torch.exp(2. * logs_p) +
|
32 |
+
((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
33 |
+
return kl
|
34 |
+
|
35 |
+
|
36 |
+
def rand_gumbel(shape):
|
37 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
38 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
39 |
+
return -torch.log(-torch.log(uniform_samples))
|
40 |
+
|
41 |
+
|
42 |
+
def rand_gumbel_like(x):
|
43 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
44 |
+
return g
|
45 |
+
|
46 |
+
|
47 |
+
def slice_segments(x, ids_str, segment_size=4):
|
48 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
49 |
+
for i in range(x.size(0)):
|
50 |
+
idx_str = ids_str[i]
|
51 |
+
idx_end = idx_str + segment_size
|
52 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
53 |
+
return ret
|
54 |
+
|
55 |
+
|
56 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
57 |
+
b, d, t = x.size()
|
58 |
+
if x_lengths is None:
|
59 |
+
x_lengths = t
|
60 |
+
ids_str_max = x_lengths - segment_size + 1
|
61 |
+
ids_str = (torch.rand([b]).to(device=x.device) *
|
62 |
+
ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length,
|
68 |
+
channels,
|
69 |
+
min_timescale=1.0,
|
70 |
+
max_timescale=1.0e4):
|
71 |
+
position = torch.arange(length, dtype=torch.float)
|
72 |
+
num_timescales = channels // 2
|
73 |
+
log_timescale_increment = (
|
74 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
75 |
+
(num_timescales - 1))
|
76 |
+
inv_timescales = min_timescale * torch.exp(
|
77 |
+
torch.arange(num_timescales, dtype=torch.float) *
|
78 |
+
-log_timescale_increment)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale,
|
89 |
+
max_timescale)
|
90 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
91 |
+
|
92 |
+
|
93 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
94 |
+
b, channels, length = x.size()
|
95 |
+
signal = get_timing_signal_1d(length, channels, min_timescale,
|
96 |
+
max_timescale)
|
97 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
98 |
+
|
99 |
+
|
100 |
+
def subsequent_mask(length):
|
101 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
102 |
+
return mask
|
103 |
+
|
104 |
+
|
105 |
+
@torch.jit.script
|
106 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
107 |
+
n_channels_int = n_channels[0]
|
108 |
+
in_act = input_a + input_b
|
109 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
110 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
111 |
+
acts = t_act * s_act
|
112 |
+
return acts
|
113 |
+
|
114 |
+
|
115 |
+
def shift_1d(x):
|
116 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
def sequence_mask(length, max_length=None):
|
121 |
+
if max_length is None:
|
122 |
+
max_length = length.max()
|
123 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
124 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
125 |
+
|
126 |
+
|
127 |
+
def generate_path(duration, mask):
|
128 |
+
"""
|
129 |
+
duration: [b, 1, t_x]
|
130 |
+
mask: [b, 1, t_y, t_x]
|
131 |
+
"""
|
132 |
+
device = duration.device
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]
|
141 |
+
]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item()**norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm**(1. / norm_type)
|
161 |
+
return total_norm
|
data_utils.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch
|
10 |
+
from utils import load_filepaths_and_text
|
11 |
+
|
12 |
+
|
13 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
14 |
+
"""
|
15 |
+
1) loads audio, speaker_id, text pairs
|
16 |
+
2) normalizes text and converts them to sequences of integers
|
17 |
+
3) computes spectrograms from audio files.
|
18 |
+
"""
|
19 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
20 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
21 |
+
# self.text_cleaners = hparams.text_cleaners
|
22 |
+
self.max_wav_value = hparams.max_wav_value
|
23 |
+
self.sampling_rate = hparams.sampling_rate
|
24 |
+
self.filter_length = hparams.filter_length
|
25 |
+
self.hop_length = hparams.hop_length
|
26 |
+
self.win_length = hparams.win_length
|
27 |
+
self.sampling_rate = hparams.sampling_rate
|
28 |
+
self.src_sampling_rate = getattr(hparams, "src_sampling_rate",
|
29 |
+
self.sampling_rate)
|
30 |
+
|
31 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
32 |
+
|
33 |
+
self.add_blank = hparams.add_blank
|
34 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
35 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
36 |
+
|
37 |
+
phone_file = getattr(hparams, "phone_table", None)
|
38 |
+
self.phone_dict = None
|
39 |
+
if phone_file is not None:
|
40 |
+
self.phone_dict = {}
|
41 |
+
with open(phone_file) as fin:
|
42 |
+
for line in fin:
|
43 |
+
arr = line.strip().split()
|
44 |
+
self.phone_dict[arr[0]] = int(arr[1])
|
45 |
+
|
46 |
+
speaker_file = getattr(hparams, "speaker_table", None)
|
47 |
+
self.speaker_dict = None
|
48 |
+
if speaker_file is not None:
|
49 |
+
self.speaker_dict = {}
|
50 |
+
with open(speaker_file) as fin:
|
51 |
+
for line in fin:
|
52 |
+
arr = line.strip().split()
|
53 |
+
self.speaker_dict[arr[0]] = int(arr[1])
|
54 |
+
|
55 |
+
random.seed(1234)
|
56 |
+
random.shuffle(self.audiopaths_sid_text)
|
57 |
+
self._filter()
|
58 |
+
|
59 |
+
def _filter(self):
|
60 |
+
"""
|
61 |
+
Filter text & store spec lengths
|
62 |
+
"""
|
63 |
+
# Store spectrogram lengths for Bucketing
|
64 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
65 |
+
# spec_length = wav_length // hop_length
|
66 |
+
|
67 |
+
audiopaths_sid_text_new = []
|
68 |
+
lengths = []
|
69 |
+
for item in self.audiopaths_sid_text:
|
70 |
+
audiopath = item[0]
|
71 |
+
# filename|text or filename|speaker|text
|
72 |
+
text = item[1] if len(item) == 2 else item[2]
|
73 |
+
if self.min_text_len <= len(text) and len(
|
74 |
+
text) <= self.max_text_len:
|
75 |
+
audiopaths_sid_text_new.append(item)
|
76 |
+
lengths.append(
|
77 |
+
int(
|
78 |
+
os.path.getsize(audiopath) * self.sampling_rate /
|
79 |
+
self.src_sampling_rate) // (2 * self.hop_length))
|
80 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
81 |
+
self.lengths = lengths
|
82 |
+
|
83 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
84 |
+
audiopath = audiopath_sid_text[0]
|
85 |
+
if len(audiopath_sid_text) == 2: # filename|text
|
86 |
+
sid = 0
|
87 |
+
text = audiopath_sid_text[1]
|
88 |
+
else: # filename|speaker|text
|
89 |
+
sid = self.speaker_dict[audiopath_sid_text[1]]
|
90 |
+
text = audiopath_sid_text[2]
|
91 |
+
text = self.get_text(text)
|
92 |
+
spec, wav = self.get_audio(audiopath)
|
93 |
+
sid = self.get_sid(sid)
|
94 |
+
return (text, spec, wav, sid)
|
95 |
+
|
96 |
+
def get_audio(self, filename):
|
97 |
+
audio, sampling_rate = torchaudio.load(filename, normalize=False)
|
98 |
+
if sampling_rate != self.sampling_rate:
|
99 |
+
audio = audio.to(torch.float)
|
100 |
+
audio = torchaudio.transforms.Resample(sampling_rate,
|
101 |
+
self.sampling_rate)(audio)
|
102 |
+
audio = audio.to(torch.int16)
|
103 |
+
audio = audio[0] # Get the first channel
|
104 |
+
audio_norm = audio / self.max_wav_value
|
105 |
+
audio_norm = audio_norm.unsqueeze(0)
|
106 |
+
spec = spectrogram_torch(audio_norm,
|
107 |
+
self.filter_length,
|
108 |
+
self.sampling_rate,
|
109 |
+
self.hop_length,
|
110 |
+
self.win_length,
|
111 |
+
center=False)
|
112 |
+
spec = torch.squeeze(spec, 0)
|
113 |
+
return spec, audio_norm
|
114 |
+
|
115 |
+
def get_text(self, text):
|
116 |
+
text_norm = [self.phone_dict[phone] for phone in text.split()]
|
117 |
+
if self.add_blank:
|
118 |
+
text_norm = commons.intersperse(text_norm, 0)
|
119 |
+
text_norm = torch.LongTensor(text_norm)
|
120 |
+
return text_norm
|
121 |
+
|
122 |
+
def get_sid(self, sid):
|
123 |
+
sid = torch.LongTensor([int(sid)])
|
124 |
+
return sid
|
125 |
+
|
126 |
+
def __getitem__(self, index):
|
127 |
+
return self.get_audio_text_speaker_pair(
|
128 |
+
self.audiopaths_sid_text[index])
|
129 |
+
|
130 |
+
def __len__(self):
|
131 |
+
return len(self.audiopaths_sid_text)
|
132 |
+
|
133 |
+
|
134 |
+
class TextAudioSpeakerCollate():
|
135 |
+
""" Zero-pads model inputs and targets
|
136 |
+
"""
|
137 |
+
def __init__(self, return_ids=False):
|
138 |
+
self.return_ids = return_ids
|
139 |
+
|
140 |
+
def __call__(self, batch):
|
141 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
142 |
+
PARAMS
|
143 |
+
------
|
144 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
145 |
+
"""
|
146 |
+
# Right zero-pad all one-hot text sequences to max input length
|
147 |
+
_, ids_sorted_decreasing = torch.sort(torch.LongTensor(
|
148 |
+
[x[1].size(1) for x in batch]),
|
149 |
+
dim=0,
|
150 |
+
descending=True)
|
151 |
+
|
152 |
+
max_text_len = max([len(x[0]) for x in batch])
|
153 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
154 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
155 |
+
|
156 |
+
text_lengths = torch.LongTensor(len(batch))
|
157 |
+
spec_lengths = torch.LongTensor(len(batch))
|
158 |
+
wav_lengths = torch.LongTensor(len(batch))
|
159 |
+
sid = torch.LongTensor(len(batch))
|
160 |
+
|
161 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
162 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0),
|
163 |
+
max_spec_len)
|
164 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
165 |
+
text_padded.zero_()
|
166 |
+
spec_padded.zero_()
|
167 |
+
wav_padded.zero_()
|
168 |
+
for i in range(len(ids_sorted_decreasing)):
|
169 |
+
row = batch[ids_sorted_decreasing[i]]
|
170 |
+
|
171 |
+
text = row[0]
|
172 |
+
text_padded[i, :text.size(0)] = text
|
173 |
+
text_lengths[i] = text.size(0)
|
174 |
+
|
175 |
+
spec = row[1]
|
176 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
177 |
+
spec_lengths[i] = spec.size(1)
|
178 |
+
|
179 |
+
wav = row[2]
|
180 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
181 |
+
wav_lengths[i] = wav.size(1)
|
182 |
+
|
183 |
+
sid[i] = row[3]
|
184 |
+
|
185 |
+
if self.return_ids:
|
186 |
+
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
187 |
+
wav_padded, wav_lengths, sid, ids_sorted_decreasing)
|
188 |
+
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
189 |
+
wav_padded, wav_lengths, sid)
|
190 |
+
|
191 |
+
|
192 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler
|
193 |
+
):
|
194 |
+
"""
|
195 |
+
Maintain similar input lengths in a batch.
|
196 |
+
Length groups are specified by boundaries.
|
197 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either
|
198 |
+
{x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
199 |
+
|
200 |
+
It removes samples which are not included in the boundaries.
|
201 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1
|
202 |
+
or length(x) > b3 are discarded.
|
203 |
+
"""
|
204 |
+
def __init__(self,
|
205 |
+
dataset,
|
206 |
+
batch_size,
|
207 |
+
boundaries,
|
208 |
+
num_replicas=None,
|
209 |
+
rank=None,
|
210 |
+
shuffle=True):
|
211 |
+
super().__init__(dataset,
|
212 |
+
num_replicas=num_replicas,
|
213 |
+
rank=rank,
|
214 |
+
shuffle=shuffle)
|
215 |
+
self.lengths = dataset.lengths
|
216 |
+
self.batch_size = batch_size
|
217 |
+
self.boundaries = boundaries
|
218 |
+
|
219 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
220 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
221 |
+
self.num_samples = self.total_size // self.num_replicas
|
222 |
+
|
223 |
+
def _create_buckets(self):
|
224 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
225 |
+
for i in range(len(self.lengths)):
|
226 |
+
length = self.lengths[i]
|
227 |
+
idx_bucket = self._bisect(length)
|
228 |
+
if idx_bucket != -1:
|
229 |
+
buckets[idx_bucket].append(i)
|
230 |
+
|
231 |
+
for i in range(len(buckets) - 1, 0, -1):
|
232 |
+
if len(buckets[i]) == 0:
|
233 |
+
buckets.pop(i)
|
234 |
+
self.boundaries.pop(i + 1)
|
235 |
+
|
236 |
+
num_samples_per_bucket = []
|
237 |
+
for i in range(len(buckets)):
|
238 |
+
len_bucket = len(buckets[i])
|
239 |
+
total_batch_size = self.num_replicas * self.batch_size
|
240 |
+
rem = (total_batch_size -
|
241 |
+
(len_bucket % total_batch_size)) % total_batch_size
|
242 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
243 |
+
return buckets, num_samples_per_bucket
|
244 |
+
|
245 |
+
def __iter__(self):
|
246 |
+
# deterministically shuffle based on epoch
|
247 |
+
g = torch.Generator()
|
248 |
+
g.manual_seed(self.epoch)
|
249 |
+
|
250 |
+
indices = []
|
251 |
+
if self.shuffle:
|
252 |
+
for bucket in self.buckets:
|
253 |
+
indices.append(
|
254 |
+
torch.randperm(len(bucket), generator=g).tolist())
|
255 |
+
else:
|
256 |
+
for bucket in self.buckets:
|
257 |
+
indices.append(list(range(len(bucket))))
|
258 |
+
|
259 |
+
batches = []
|
260 |
+
for i in range(len(self.buckets)):
|
261 |
+
bucket = self.buckets[i]
|
262 |
+
len_bucket = len(bucket)
|
263 |
+
ids_bucket = indices[i]
|
264 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
265 |
+
|
266 |
+
# add extra samples to make it evenly divisible
|
267 |
+
rem = num_samples_bucket - len_bucket
|
268 |
+
ids_bucket = ids_bucket + ids_bucket * (
|
269 |
+
rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
270 |
+
|
271 |
+
# subsample
|
272 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
273 |
+
|
274 |
+
# batching
|
275 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
276 |
+
batch = [
|
277 |
+
bucket[idx]
|
278 |
+
for idx in ids_bucket[j * self.batch_size:(j + 1) *
|
279 |
+
self.batch_size]
|
280 |
+
]
|
281 |
+
batches.append(batch)
|
282 |
+
|
283 |
+
if self.shuffle:
|
284 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
285 |
+
batches = [batches[i] for i in batch_ids]
|
286 |
+
self.batches = batches
|
287 |
+
|
288 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
289 |
+
return iter(self.batches)
|
290 |
+
|
291 |
+
def _bisect(self, x, lo=0, hi=None):
|
292 |
+
if hi is None:
|
293 |
+
hi = len(self.boundaries) - 1
|
294 |
+
|
295 |
+
if hi > lo:
|
296 |
+
mid = (hi + lo) // 2
|
297 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
298 |
+
return mid
|
299 |
+
elif x <= self.boundaries[mid]:
|
300 |
+
return self._bisect(x, lo, mid)
|
301 |
+
else:
|
302 |
+
return self._bisect(x, mid + 1, hi)
|
303 |
+
else:
|
304 |
+
return -1
|
305 |
+
|
306 |
+
def __len__(self):
|
307 |
+
return self.num_samples // self.batch_size
|
export_onnx.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from models import SynthesizerTrn
|
23 |
+
import utils
|
24 |
+
|
25 |
+
try:
|
26 |
+
import onnxruntime as ort
|
27 |
+
except ImportError:
|
28 |
+
print('Please install onnxruntime!')
|
29 |
+
sys.exit(1)
|
30 |
+
|
31 |
+
|
32 |
+
def to_numpy(tensor):
|
33 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
34 |
+
else tensor.detach().numpy()
|
35 |
+
|
36 |
+
|
37 |
+
def get_args():
|
38 |
+
parser = argparse.ArgumentParser(description='export onnx model')
|
39 |
+
parser.add_argument('--checkpoint', required=True, help='checkpoint')
|
40 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
41 |
+
parser.add_argument('--onnx_model', required=True, help='onnx model name')
|
42 |
+
# parser.add_argument('--phone_table',
|
43 |
+
# required=True,
|
44 |
+
# help='input phone dict')
|
45 |
+
# parser.add_argument('--speaker_table', default=None, help='speaker table')
|
46 |
+
# parser.add_argument("--speaker_num", required=True,
|
47 |
+
# type=int, help="speaker num")
|
48 |
+
parser.add_argument(
|
49 |
+
'--providers',
|
50 |
+
required=False,
|
51 |
+
default='CPUExecutionProvider',
|
52 |
+
choices=['CUDAExecutionProvider', 'CPUExecutionProvider'],
|
53 |
+
help='the model to send request to')
|
54 |
+
args = parser.parse_args()
|
55 |
+
return args
|
56 |
+
|
57 |
+
|
58 |
+
def get_data_from_cfg(cfg_path: str):
|
59 |
+
assert os.path.isfile(cfg_path)
|
60 |
+
with open(cfg_path, 'r') as f:
|
61 |
+
data = json.load(f)
|
62 |
+
symbols = data["symbols"]
|
63 |
+
speaker_num = data["data"]["n_speakers"]
|
64 |
+
return len(symbols), speaker_num
|
65 |
+
|
66 |
+
|
67 |
+
def main():
|
68 |
+
args = get_args()
|
69 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
70 |
+
|
71 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
72 |
+
# with open(args.phone_table) as p_f:
|
73 |
+
# phone_num = len(p_f.readlines()) + 1
|
74 |
+
# num_speakers = 1
|
75 |
+
# if args.speaker_table is not None:
|
76 |
+
# num_speakers = len(open(args.speaker_table).readlines()) + 1
|
77 |
+
phone_num, num_speakers = get_data_from_cfg(args.cfg)
|
78 |
+
net_g = SynthesizerTrn(phone_num,
|
79 |
+
hps.data.filter_length // 2 + 1,
|
80 |
+
hps.train.segment_size // hps.data.hop_length,
|
81 |
+
n_speakers=num_speakers,
|
82 |
+
**hps.model)
|
83 |
+
utils.load_checkpoint(args.checkpoint, net_g, None)
|
84 |
+
net_g.forward = net_g.export_forward
|
85 |
+
net_g.eval()
|
86 |
+
|
87 |
+
seq = torch.randint(low=0, high=phone_num, size=(1, 10), dtype=torch.long)
|
88 |
+
seq_len = torch.IntTensor([seq.size(1)]).long()
|
89 |
+
|
90 |
+
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
|
91 |
+
# 参考 https://github.com/gbxh/genshinTTS
|
92 |
+
scales = torch.FloatTensor([0.667, 1.0, 0.8])
|
93 |
+
# make triton dynamic shape happy
|
94 |
+
scales = scales.unsqueeze(0)
|
95 |
+
sid = torch.IntTensor([0]).long()
|
96 |
+
|
97 |
+
dummy_input = (seq, seq_len, scales, sid)
|
98 |
+
torch.onnx.export(model=net_g,
|
99 |
+
args=dummy_input,
|
100 |
+
f=args.onnx_model,
|
101 |
+
input_names=['input', 'input_lengths', 'scales', 'sid'],
|
102 |
+
output_names=['output'],
|
103 |
+
dynamic_axes={
|
104 |
+
'input': {
|
105 |
+
0: 'batch',
|
106 |
+
1: 'phonemes'
|
107 |
+
},
|
108 |
+
'input_lengths': {
|
109 |
+
0: 'batch'
|
110 |
+
},
|
111 |
+
'scales': {
|
112 |
+
0: 'batch'
|
113 |
+
},
|
114 |
+
'sid': {
|
115 |
+
0: 'batch'
|
116 |
+
},
|
117 |
+
'output': {
|
118 |
+
0: 'batch',
|
119 |
+
1: 'audio',
|
120 |
+
2: 'audio_length'
|
121 |
+
}
|
122 |
+
},
|
123 |
+
opset_version=13,
|
124 |
+
verbose=False)
|
125 |
+
|
126 |
+
# Verify onnx precision
|
127 |
+
torch_output = net_g(seq, seq_len, scales, sid)
|
128 |
+
providers = [args.providers]
|
129 |
+
ort_sess = ort.InferenceSession(args.onnx_model, providers=providers)
|
130 |
+
ort_inputs = {
|
131 |
+
'input': to_numpy(seq),
|
132 |
+
'input_lengths': to_numpy(seq_len),
|
133 |
+
'scales': to_numpy(scales),
|
134 |
+
'sid': to_numpy(sid),
|
135 |
+
}
|
136 |
+
onnx_output = ort_sess.run(None, ort_inputs)
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
main()
|
losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr)**2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += (r_loss + g_loss)
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg)**2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
main.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
opj = input("是否启用pyopenjtalk?封装版无法保证非japanese cleaners推理日语时的质量(Y/N)")
|
6 |
+
if opj == "N":
|
7 |
+
from TEXTS import text_to_sequence
|
8 |
+
else:
|
9 |
+
from text import text_to_sequence
|
10 |
+
import numpy as np
|
11 |
+
from scipy.io import wavfile
|
12 |
+
import torch
|
13 |
+
import json
|
14 |
+
import commons
|
15 |
+
import utils
|
16 |
+
import sys
|
17 |
+
import pathlib
|
18 |
+
import onnxruntime as ort
|
19 |
+
import gradio as gr
|
20 |
+
import argparse
|
21 |
+
import time
|
22 |
+
import os
|
23 |
+
import io
|
24 |
+
from scipy.io.wavfile import write
|
25 |
+
from flask import Flask, request
|
26 |
+
from threading import Thread
|
27 |
+
import openai
|
28 |
+
import requests
|
29 |
+
class VitsGradio:
|
30 |
+
def __init__(self):
|
31 |
+
self.lan = ["中文","日文","自动"]
|
32 |
+
self.chatapi = ["gpt-3.5-turbo","gpt3"]
|
33 |
+
self.modelPaths = []
|
34 |
+
for root,dirs,files in os.walk("checkpoints"):
|
35 |
+
for dir in dirs:
|
36 |
+
self.modelPaths.append(dir)
|
37 |
+
with gr.Blocks() as self.Vits:
|
38 |
+
with gr.Tab("调试用"):
|
39 |
+
with gr.Row():
|
40 |
+
with gr.Column():
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column():
|
43 |
+
self.text = gr.TextArea(label="Text", value="你好")
|
44 |
+
with gr.Accordion(label="测试api", open=False):
|
45 |
+
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟")
|
46 |
+
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=")
|
47 |
+
butto = gr.Button("测试从网页端获取文本")
|
48 |
+
btnVC = gr.Button("测试tts+对话程序")
|
49 |
+
with gr.Column():
|
50 |
+
output2 = gr.TextArea(label="回复")
|
51 |
+
output1 = gr.Audio(label="采样率22050")
|
52 |
+
output3 = gr.outputs.File(label="44100hz: output.wav")
|
53 |
+
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3])
|
54 |
+
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2])
|
55 |
+
with gr.Tab("控制面板"):
|
56 |
+
with gr.Row():
|
57 |
+
with gr.Column():
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
self.api_input1 = gr.TextArea(label="输入api-key或本地存储说话模型的路径", value="https://platform.openai.com/account/api-keys")
|
61 |
+
with gr.Accordion(label="chatbot选择", open=False):
|
62 |
+
self.api_input2 = gr.Checkbox(value=True, label="采用gpt3.5")
|
63 |
+
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot")
|
64 |
+
self.local_chat2 = gr.Checkbox(value=True, label="是否量化")
|
65 |
+
res = gr.TextArea()
|
66 |
+
Botselection = gr.Button("确认模型")
|
67 |
+
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res])
|
68 |
+
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
69 |
+
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
70 |
+
with gr.Column():
|
71 |
+
btnVC = gr.Button("Submit")
|
72 |
+
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(101)), value=0, interactive=True)
|
73 |
+
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
74 |
+
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
75 |
+
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
76 |
+
statusa = gr.TextArea()
|
77 |
+
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
|
78 |
+
|
79 |
+
def Simul(self,text,url_input):
|
80 |
+
web = url_input + text
|
81 |
+
res = requests.get(web)
|
82 |
+
music = res.content
|
83 |
+
with open('output.wav', 'wb') as code:
|
84 |
+
code.write(music)
|
85 |
+
file_path = "output.wav"
|
86 |
+
return web,file_path
|
87 |
+
|
88 |
+
|
89 |
+
def chatgpt(self,text):
|
90 |
+
self.messages.append({"role": "user", "content": text},)
|
91 |
+
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages)
|
92 |
+
reply = chat.choices[0].message.content
|
93 |
+
return reply
|
94 |
+
|
95 |
+
def ChATGLM(self,text):
|
96 |
+
if text == 'clear':
|
97 |
+
self.history = []
|
98 |
+
response, new_history = self.model.chat(self.tokenizer, text, self.history)
|
99 |
+
response = response.replace(" ",'').replace("\n",'.')
|
100 |
+
self.history = new_history
|
101 |
+
return response
|
102 |
+
|
103 |
+
def gpt3_chat(self,text):
|
104 |
+
call_name = "Waifu"
|
105 |
+
openai.api_key = args.key
|
106 |
+
identity = ""
|
107 |
+
start_sequence = '\n'+str(call_name)+':'
|
108 |
+
restart_sequence = "\nYou: "
|
109 |
+
if 1 == 1:
|
110 |
+
prompt0 = text #当期prompt
|
111 |
+
if text == 'quit':
|
112 |
+
return prompt0
|
113 |
+
prompt = identity + prompt0 + start_sequence
|
114 |
+
response = openai.Completion.create(
|
115 |
+
model="text-davinci-003",
|
116 |
+
prompt=prompt,
|
117 |
+
temperature=0.5,
|
118 |
+
max_tokens=1000,
|
119 |
+
top_p=1.0,
|
120 |
+
frequency_penalty=0.5,
|
121 |
+
presence_penalty=0.0,
|
122 |
+
stop=["\nYou:"]
|
123 |
+
)
|
124 |
+
return response['choices'][0]['text'].strip()
|
125 |
+
|
126 |
+
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2):
|
127 |
+
if local_chat1:
|
128 |
+
from transformers import AutoTokenizer, AutoModel
|
129 |
+
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True)
|
130 |
+
if local_chat2:
|
131 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().quantize(4).cuda()
|
132 |
+
else:
|
133 |
+
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True)
|
134 |
+
self.history = []
|
135 |
+
else:
|
136 |
+
self.messages = []
|
137 |
+
openai.api_key = api_input1
|
138 |
+
return "Finished"
|
139 |
+
|
140 |
+
def is_japanese(self,string):
|
141 |
+
for ch in string:
|
142 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
143 |
+
return True
|
144 |
+
return False
|
145 |
+
|
146 |
+
def is_english(self,string):
|
147 |
+
import re
|
148 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
149 |
+
if pattern.fullmatch(string):
|
150 |
+
return True
|
151 |
+
else:
|
152 |
+
return False
|
153 |
+
|
154 |
+
def get_symbols_from_json(self,path):
|
155 |
+
assert os.path.isfile(path)
|
156 |
+
with open(path, 'r') as f:
|
157 |
+
data = json.load(f)
|
158 |
+
return data['symbols']
|
159 |
+
|
160 |
+
def sle(self,language,text):
|
161 |
+
text = text.replace('\n','。').replace(' ',',')
|
162 |
+
if language == "中文":
|
163 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
164 |
+
return tts_input1
|
165 |
+
elif language == "自动":
|
166 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
167 |
+
return tts_input1
|
168 |
+
elif language == "日文":
|
169 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
170 |
+
return tts_input1
|
171 |
+
|
172 |
+
def get_text(self,text,hps_ms):
|
173 |
+
text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
|
174 |
+
if hps_ms.data.add_blank:
|
175 |
+
text_norm = commons.intersperse(text_norm, 0)
|
176 |
+
text_norm = torch.LongTensor(text_norm)
|
177 |
+
return text_norm
|
178 |
+
|
179 |
+
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
180 |
+
self.symbols = self.get_symbols_from_json(f"checkpoints/{path}/config.json")
|
181 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
182 |
+
phone_dict = {
|
183 |
+
symbol: i for i, symbol in enumerate(self.symbols)
|
184 |
+
}
|
185 |
+
self.ort_sess = ort.InferenceSession(f"checkpoints/{path}/model.onnx")
|
186 |
+
self.language = input2
|
187 |
+
self.speaker_id = input3
|
188 |
+
self.n_scale = n_scale
|
189 |
+
self.n_scale_w = n_scale_w
|
190 |
+
self.l_scale = l_scale
|
191 |
+
print(self.language,self.speaker_id,self.n_scale)
|
192 |
+
return 'success'
|
193 |
+
|
194 |
+
def tts_fn(self,text):
|
195 |
+
if self.local_chat1:
|
196 |
+
text = self.chatgpt(text)
|
197 |
+
elif self.api_input2:
|
198 |
+
text = self.ChATGLM(text)
|
199 |
+
else:
|
200 |
+
text = self.gpt3_chat(text)
|
201 |
+
print(text)
|
202 |
+
text =self.sle(self.language,text)
|
203 |
+
seq = text_to_sequence(text, cleaner_names=self.hps.data.text_cleaners)
|
204 |
+
if self.hps.data.add_blank:
|
205 |
+
seq = commons.intersperse(seq, 0)
|
206 |
+
with torch.no_grad():
|
207 |
+
x = np.array([seq], dtype=np.int64)
|
208 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
209 |
+
sid = np.array([self.speaker_id], dtype=np.int64)
|
210 |
+
scales = np.array([self.n_scale, self.n_scale_w, self.l_scale], dtype=np.float32)
|
211 |
+
scales.resize(1, 3)
|
212 |
+
ort_inputs = {
|
213 |
+
'input': x,
|
214 |
+
'input_lengths': x_len,
|
215 |
+
'scales': scales,
|
216 |
+
'sid': sid
|
217 |
+
}
|
218 |
+
t1 = time.time()
|
219 |
+
audio = np.squeeze(self.ort_sess.run(None, ort_inputs))
|
220 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
221 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
222 |
+
t2 = time.time()
|
223 |
+
spending_time = "推理时间:"+str(t2-t1)+"s"
|
224 |
+
print(spending_time)
|
225 |
+
bytes_wav = bytes()
|
226 |
+
byte_io = io.BytesIO(bytes_wav)
|
227 |
+
wavfile.write('moe/temp1.wav',self.hps.data.sampling_rate, audio.astype(np.int16))
|
228 |
+
cmd = 'ffmpeg -y -i ' + 'moe/temp1.wav' + ' -ar 44100 ' + 'moe/temp2.wav'
|
229 |
+
os.system(cmd)
|
230 |
+
return (self.hps.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','')
|
231 |
+
|
232 |
+
app = Flask(__name__)
|
233 |
+
print("开始部署")
|
234 |
+
grVits = VitsGradio()
|
235 |
+
|
236 |
+
@app.route('/chat')
|
237 |
+
def text_api():
|
238 |
+
message = request.args.get('Text','')
|
239 |
+
audio,text = grVits.tts_fn(message)
|
240 |
+
text = text.replace('[JA]','').replace('[ZH]','')
|
241 |
+
with open('moe/temp2.wav','rb') as bit:
|
242 |
+
wav_bytes = bit.read()
|
243 |
+
headers = {
|
244 |
+
'Content-Type': 'audio/wav',
|
245 |
+
'Text': text.encode('utf-8')}
|
246 |
+
return wav_bytes, 200, headers
|
247 |
+
|
248 |
+
def gradio_interface():
|
249 |
+
return grVits.Vits.launch()
|
250 |
+
|
251 |
+
if __name__ == '__main__':
|
252 |
+
api_thread = Thread(target=app.run, args=("0.0.0.0", 8080))
|
253 |
+
gradio_thread = Thread(target=gradio_interface)
|
254 |
+
api_thread.start()
|
255 |
+
gradio_thread.start()
|
mel_processing.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.utils.data
|
4 |
+
from librosa.filters import mel as librosa_mel_fn
|
5 |
+
|
6 |
+
MAX_WAV_VALUE = 32768.0
|
7 |
+
|
8 |
+
|
9 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
10 |
+
"""
|
11 |
+
PARAMS
|
12 |
+
------
|
13 |
+
C: compression factor
|
14 |
+
"""
|
15 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
16 |
+
|
17 |
+
|
18 |
+
def dynamic_range_decompression_torch(x, C=1):
|
19 |
+
"""
|
20 |
+
PARAMS
|
21 |
+
------
|
22 |
+
C: compression factor used to compress
|
23 |
+
"""
|
24 |
+
return torch.exp(x) / C
|
25 |
+
|
26 |
+
|
27 |
+
def spectral_normalize_torch(magnitudes):
|
28 |
+
output = dynamic_range_compression_torch(magnitudes)
|
29 |
+
return output
|
30 |
+
|
31 |
+
|
32 |
+
def spectral_de_normalize_torch(magnitudes):
|
33 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
mel_basis = {}
|
38 |
+
hann_window = {}
|
39 |
+
|
40 |
+
|
41 |
+
def spectrogram_torch(y,
|
42 |
+
n_fft,
|
43 |
+
sampling_rate,
|
44 |
+
hop_size,
|
45 |
+
win_size,
|
46 |
+
center=False):
|
47 |
+
if torch.min(y) < -1.:
|
48 |
+
print('min value is ', torch.min(y))
|
49 |
+
if torch.max(y) > 1.:
|
50 |
+
print('max value is ', torch.max(y))
|
51 |
+
|
52 |
+
global hann_window
|
53 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
54 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
55 |
+
if wnsize_dtype_device not in hann_window:
|
56 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
57 |
+
dtype=y.dtype, device=y.device)
|
58 |
+
|
59 |
+
y = F.pad(y.unsqueeze(1),
|
60 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
61 |
+
mode='reflect')
|
62 |
+
y = y.squeeze(1)
|
63 |
+
|
64 |
+
spec = torch.stft(y,
|
65 |
+
n_fft,
|
66 |
+
hop_length=hop_size,
|
67 |
+
win_length=win_size,
|
68 |
+
window=hann_window[wnsize_dtype_device],
|
69 |
+
center=center,
|
70 |
+
pad_mode='reflect',
|
71 |
+
normalized=False,
|
72 |
+
onesided=True)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
85 |
+
dtype=spec.dtype, device=spec.device)
|
86 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
87 |
+
spec = spectral_normalize_torch(spec)
|
88 |
+
return spec
|
89 |
+
|
90 |
+
|
91 |
+
def mel_spectrogram_torch(y,
|
92 |
+
n_fft,
|
93 |
+
num_mels,
|
94 |
+
sampling_rate,
|
95 |
+
hop_size,
|
96 |
+
win_size,
|
97 |
+
fmin,
|
98 |
+
fmax,
|
99 |
+
center=False):
|
100 |
+
if torch.min(y) < -1.:
|
101 |
+
print('min value is ', torch.min(y))
|
102 |
+
if torch.max(y) > 1.:
|
103 |
+
print('max value is ', torch.max(y))
|
104 |
+
|
105 |
+
global mel_basis, hann_window
|
106 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
107 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
108 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
109 |
+
if fmax_dtype_device not in mel_basis:
|
110 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
111 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
112 |
+
dtype=y.dtype, device=y.device)
|
113 |
+
if wnsize_dtype_device not in hann_window:
|
114 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
115 |
+
dtype=y.dtype, device=y.device)
|
116 |
+
|
117 |
+
y = F.pad(y.unsqueeze(1),
|
118 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
119 |
+
mode='reflect')
|
120 |
+
y = y.squeeze(1)
|
121 |
+
|
122 |
+
spec = torch.stft(y,
|
123 |
+
n_fft,
|
124 |
+
hop_length=hop_size,
|
125 |
+
win_length=win_size,
|
126 |
+
window=hann_window[wnsize_dtype_device],
|
127 |
+
center=center,
|
128 |
+
pad_mode='reflect',
|
129 |
+
normalized=False,
|
130 |
+
onesided=True)
|
131 |
+
|
132 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
133 |
+
|
134 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
135 |
+
spec = spectral_normalize_torch(spec)
|
136 |
+
|
137 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
8 |
+
import monotonic_align
|
9 |
+
|
10 |
+
import commons
|
11 |
+
import modules
|
12 |
+
import attentions
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
class StochasticDurationPredictor(nn.Module):
|
17 |
+
def __init__(self,
|
18 |
+
in_channels,
|
19 |
+
filter_channels,
|
20 |
+
kernel_size,
|
21 |
+
p_dropout,
|
22 |
+
n_flows=4,
|
23 |
+
gin_channels=0):
|
24 |
+
super().__init__()
|
25 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
26 |
+
self.in_channels = in_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.kernel_size = kernel_size
|
29 |
+
self.p_dropout = p_dropout
|
30 |
+
self.n_flows = n_flows
|
31 |
+
self.gin_channels = gin_channels
|
32 |
+
|
33 |
+
self.log_flow = modules.Log()
|
34 |
+
self.flows = nn.ModuleList()
|
35 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
36 |
+
for i in range(n_flows):
|
37 |
+
self.flows.append(
|
38 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
39 |
+
self.flows.append(modules.Flip())
|
40 |
+
|
41 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
42 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
43 |
+
self.post_convs = modules.DDSConv(filter_channels,
|
44 |
+
kernel_size,
|
45 |
+
n_layers=3,
|
46 |
+
p_dropout=p_dropout)
|
47 |
+
self.post_flows = nn.ModuleList()
|
48 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
49 |
+
for i in range(4):
|
50 |
+
self.post_flows.append(
|
51 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
52 |
+
self.post_flows.append(modules.Flip())
|
53 |
+
|
54 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
55 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
56 |
+
self.convs = modules.DDSConv(filter_channels,
|
57 |
+
kernel_size,
|
58 |
+
n_layers=3,
|
59 |
+
p_dropout=p_dropout)
|
60 |
+
if gin_channels != 0:
|
61 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
62 |
+
|
63 |
+
def forward(self,
|
64 |
+
x,
|
65 |
+
x_mask,
|
66 |
+
w=None,
|
67 |
+
g=None,
|
68 |
+
reverse=False,
|
69 |
+
noise_scale=1.0):
|
70 |
+
x = torch.detach(x)
|
71 |
+
x = self.pre(x)
|
72 |
+
if g is not None:
|
73 |
+
g = torch.detach(g)
|
74 |
+
x = x + self.cond(g)
|
75 |
+
x = self.convs(x, x_mask)
|
76 |
+
x = self.proj(x) * x_mask
|
77 |
+
|
78 |
+
if not reverse:
|
79 |
+
flows = self.flows
|
80 |
+
assert w is not None
|
81 |
+
|
82 |
+
logdet_tot_q = 0
|
83 |
+
h_w = self.post_pre(w)
|
84 |
+
h_w = self.post_convs(h_w, x_mask)
|
85 |
+
h_w = self.post_proj(h_w) * x_mask
|
86 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(
|
87 |
+
device=x.device, dtype=x.dtype) * x_mask
|
88 |
+
z_q = e_q
|
89 |
+
for flow in self.post_flows:
|
90 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
91 |
+
logdet_tot_q += logdet_q
|
92 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
93 |
+
u = torch.sigmoid(z_u) * x_mask
|
94 |
+
z0 = (w - u) * x_mask
|
95 |
+
logdet_tot_q += torch.sum(
|
96 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
97 |
+
logq = torch.sum(
|
98 |
+
-0.5 * (math.log(2 * math.pi) +
|
99 |
+
(e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
|
100 |
+
|
101 |
+
logdet_tot = 0
|
102 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
103 |
+
logdet_tot += logdet
|
104 |
+
z = torch.cat([z0, z1], 1)
|
105 |
+
for flow in flows:
|
106 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
107 |
+
logdet_tot = logdet_tot + logdet
|
108 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) +
|
109 |
+
(z**2)) * x_mask, [1, 2]) - logdet_tot
|
110 |
+
return nll + logq # [b]
|
111 |
+
else:
|
112 |
+
flows = list(reversed(self.flows))
|
113 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
114 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(
|
115 |
+
device=x.device, dtype=x.dtype) * noise_scale
|
116 |
+
for flow in flows:
|
117 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
118 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
119 |
+
logw = z0
|
120 |
+
return logw
|
121 |
+
|
122 |
+
|
123 |
+
class DurationPredictor(nn.Module):
|
124 |
+
def __init__(self,
|
125 |
+
in_channels,
|
126 |
+
filter_channels,
|
127 |
+
kernel_size,
|
128 |
+
p_dropout,
|
129 |
+
gin_channels=0):
|
130 |
+
super().__init__()
|
131 |
+
|
132 |
+
self.in_channels = in_channels
|
133 |
+
self.filter_channels = filter_channels
|
134 |
+
self.kernel_size = kernel_size
|
135 |
+
self.p_dropout = p_dropout
|
136 |
+
self.gin_channels = gin_channels
|
137 |
+
|
138 |
+
self.drop = nn.Dropout(p_dropout)
|
139 |
+
self.conv_1 = nn.Conv1d(in_channels,
|
140 |
+
filter_channels,
|
141 |
+
kernel_size,
|
142 |
+
padding=kernel_size // 2)
|
143 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
144 |
+
self.conv_2 = nn.Conv1d(filter_channels,
|
145 |
+
filter_channels,
|
146 |
+
kernel_size,
|
147 |
+
padding=kernel_size // 2)
|
148 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
149 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
150 |
+
|
151 |
+
if gin_channels != 0:
|
152 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
153 |
+
|
154 |
+
def forward(self, x, x_mask, g=None):
|
155 |
+
x = torch.detach(x)
|
156 |
+
if g is not None:
|
157 |
+
g = torch.detach(g)
|
158 |
+
x = x + self.cond(g)
|
159 |
+
x = self.conv_1(x * x_mask)
|
160 |
+
x = torch.relu(x)
|
161 |
+
x = self.norm_1(x)
|
162 |
+
x = self.drop(x)
|
163 |
+
x = self.conv_2(x * x_mask)
|
164 |
+
x = torch.relu(x)
|
165 |
+
x = self.norm_2(x)
|
166 |
+
x = self.drop(x)
|
167 |
+
x = self.proj(x * x_mask)
|
168 |
+
return x * x_mask
|
169 |
+
|
170 |
+
|
171 |
+
class TextEncoder(nn.Module):
|
172 |
+
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels,
|
173 |
+
n_heads, n_layers, kernel_size, p_dropout):
|
174 |
+
super().__init__()
|
175 |
+
self.n_vocab = n_vocab
|
176 |
+
self.out_channels = out_channels
|
177 |
+
self.hidden_channels = hidden_channels
|
178 |
+
self.filter_channels = filter_channels
|
179 |
+
self.n_heads = n_heads
|
180 |
+
self.n_layers = n_layers
|
181 |
+
self.kernel_size = kernel_size
|
182 |
+
self.p_dropout = p_dropout
|
183 |
+
|
184 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
185 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
186 |
+
|
187 |
+
self.encoder = attentions.Encoder(hidden_channels, filter_channels,
|
188 |
+
n_heads, n_layers, kernel_size,
|
189 |
+
p_dropout)
|
190 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
191 |
+
|
192 |
+
def forward(self, x, x_lengths):
|
193 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
194 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
195 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
196 |
+
1).to(x.dtype)
|
197 |
+
|
198 |
+
x = self.encoder(x * x_mask, x_mask)
|
199 |
+
stats = self.proj(x) * x_mask
|
200 |
+
|
201 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
202 |
+
return x, m, logs, x_mask
|
203 |
+
|
204 |
+
|
205 |
+
class ResidualCouplingBlock(nn.Module):
|
206 |
+
def __init__(self,
|
207 |
+
channels,
|
208 |
+
hidden_channels,
|
209 |
+
kernel_size,
|
210 |
+
dilation_rate,
|
211 |
+
n_layers,
|
212 |
+
n_flows=4,
|
213 |
+
gin_channels=0):
|
214 |
+
super().__init__()
|
215 |
+
self.channels = channels
|
216 |
+
self.hidden_channels = hidden_channels
|
217 |
+
self.kernel_size = kernel_size
|
218 |
+
self.dilation_rate = dilation_rate
|
219 |
+
self.n_layers = n_layers
|
220 |
+
self.n_flows = n_flows
|
221 |
+
self.gin_channels = gin_channels
|
222 |
+
|
223 |
+
self.flows = nn.ModuleList()
|
224 |
+
for i in range(n_flows):
|
225 |
+
self.flows.append(
|
226 |
+
modules.ResidualCouplingLayer(channels,
|
227 |
+
hidden_channels,
|
228 |
+
kernel_size,
|
229 |
+
dilation_rate,
|
230 |
+
n_layers,
|
231 |
+
gin_channels=gin_channels,
|
232 |
+
mean_only=True))
|
233 |
+
self.flows.append(modules.Flip())
|
234 |
+
|
235 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
236 |
+
if not reverse:
|
237 |
+
for flow in self.flows:
|
238 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
239 |
+
else:
|
240 |
+
for flow in reversed(self.flows):
|
241 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
242 |
+
return x
|
243 |
+
|
244 |
+
|
245 |
+
class PosteriorEncoder(nn.Module):
|
246 |
+
def __init__(self,
|
247 |
+
in_channels,
|
248 |
+
out_channels,
|
249 |
+
hidden_channels,
|
250 |
+
kernel_size,
|
251 |
+
dilation_rate,
|
252 |
+
n_layers,
|
253 |
+
gin_channels=0):
|
254 |
+
super().__init__()
|
255 |
+
self.in_channels = in_channels
|
256 |
+
self.out_channels = out_channels
|
257 |
+
self.hidden_channels = hidden_channels
|
258 |
+
self.kernel_size = kernel_size
|
259 |
+
self.dilation_rate = dilation_rate
|
260 |
+
self.n_layers = n_layers
|
261 |
+
self.gin_channels = gin_channels
|
262 |
+
|
263 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
264 |
+
self.enc = modules.WN(hidden_channels,
|
265 |
+
kernel_size,
|
266 |
+
dilation_rate,
|
267 |
+
n_layers,
|
268 |
+
gin_channels=gin_channels)
|
269 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
270 |
+
|
271 |
+
def forward(self, x, x_lengths, g=None):
|
272 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
273 |
+
1).to(x.dtype)
|
274 |
+
x = self.pre(x) * x_mask
|
275 |
+
x = self.enc(x, x_mask, g=g)
|
276 |
+
stats = self.proj(x) * x_mask
|
277 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
278 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
279 |
+
return z, m, logs, x_mask
|
280 |
+
|
281 |
+
|
282 |
+
class Generator(torch.nn.Module):
|
283 |
+
def __init__(self,
|
284 |
+
initial_channel,
|
285 |
+
resblock,
|
286 |
+
resblock_kernel_sizes,
|
287 |
+
resblock_dilation_sizes,
|
288 |
+
upsample_rates,
|
289 |
+
upsample_initial_channel,
|
290 |
+
upsample_kernel_sizes,
|
291 |
+
gin_channels=0):
|
292 |
+
super(Generator, self).__init__()
|
293 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
294 |
+
self.num_upsamples = len(upsample_rates)
|
295 |
+
self.conv_pre = Conv1d(initial_channel,
|
296 |
+
upsample_initial_channel,
|
297 |
+
7,
|
298 |
+
1,
|
299 |
+
padding=3)
|
300 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
301 |
+
|
302 |
+
self.ups = nn.ModuleList()
|
303 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
304 |
+
self.ups.append(
|
305 |
+
weight_norm(
|
306 |
+
ConvTranspose1d(upsample_initial_channel // (2**i),
|
307 |
+
upsample_initial_channel // (2**(i + 1)),
|
308 |
+
k,
|
309 |
+
u,
|
310 |
+
padding=(k - u) // 2)))
|
311 |
+
|
312 |
+
self.resblocks = nn.ModuleList()
|
313 |
+
for i in range(len(self.ups)):
|
314 |
+
ch = upsample_initial_channel // (2**(i + 1))
|
315 |
+
for j, (k, d) in enumerate(
|
316 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
317 |
+
self.resblocks.append(resblock(ch, k, d))
|
318 |
+
|
319 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
320 |
+
self.ups.apply(init_weights)
|
321 |
+
|
322 |
+
if gin_channels != 0:
|
323 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
324 |
+
|
325 |
+
def forward(self, x, g=None):
|
326 |
+
x = self.conv_pre(x)
|
327 |
+
if g is not None:
|
328 |
+
x = x + self.cond(g)
|
329 |
+
|
330 |
+
for i in range(self.num_upsamples):
|
331 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
332 |
+
x = self.ups[i](x)
|
333 |
+
xs = None
|
334 |
+
for j in range(self.num_kernels):
|
335 |
+
if xs is None:
|
336 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
337 |
+
else:
|
338 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
339 |
+
x = xs / self.num_kernels
|
340 |
+
x = F.leaky_relu(x)
|
341 |
+
x = self.conv_post(x)
|
342 |
+
x = torch.tanh(x)
|
343 |
+
|
344 |
+
return x
|
345 |
+
|
346 |
+
def remove_weight_norm(self):
|
347 |
+
print('Removing weight norm...')
|
348 |
+
for l in self.ups:
|
349 |
+
remove_weight_norm(l)
|
350 |
+
for l in self.resblocks:
|
351 |
+
l.remove_weight_norm()
|
352 |
+
|
353 |
+
|
354 |
+
class DiscriminatorP(torch.nn.Module):
|
355 |
+
def __init__(self,
|
356 |
+
period,
|
357 |
+
kernel_size=5,
|
358 |
+
stride=3,
|
359 |
+
use_spectral_norm=False):
|
360 |
+
super(DiscriminatorP, self).__init__()
|
361 |
+
self.period = period
|
362 |
+
self.use_spectral_norm = use_spectral_norm
|
363 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
364 |
+
self.convs = nn.ModuleList([
|
365 |
+
norm_f(
|
366 |
+
Conv2d(1,
|
367 |
+
32, (kernel_size, 1), (stride, 1),
|
368 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
369 |
+
norm_f(
|
370 |
+
Conv2d(32,
|
371 |
+
128, (kernel_size, 1), (stride, 1),
|
372 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
373 |
+
norm_f(
|
374 |
+
Conv2d(128,
|
375 |
+
512, (kernel_size, 1), (stride, 1),
|
376 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
377 |
+
norm_f(
|
378 |
+
Conv2d(512,
|
379 |
+
1024, (kernel_size, 1), (stride, 1),
|
380 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
381 |
+
norm_f(
|
382 |
+
Conv2d(1024,
|
383 |
+
1024, (kernel_size, 1),
|
384 |
+
1,
|
385 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
386 |
+
])
|
387 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
388 |
+
|
389 |
+
def forward(self, x):
|
390 |
+
fmap = []
|
391 |
+
|
392 |
+
# 1d to 2d
|
393 |
+
b, c, t = x.shape
|
394 |
+
if t % self.period != 0: # pad first
|
395 |
+
n_pad = self.period - (t % self.period)
|
396 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
397 |
+
t = t + n_pad
|
398 |
+
x = x.view(b, c, t // self.period, self.period)
|
399 |
+
|
400 |
+
for l in self.convs:
|
401 |
+
x = l(x)
|
402 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
403 |
+
fmap.append(x)
|
404 |
+
x = self.conv_post(x)
|
405 |
+
fmap.append(x)
|
406 |
+
x = torch.flatten(x, 1, -1)
|
407 |
+
|
408 |
+
return x, fmap
|
409 |
+
|
410 |
+
|
411 |
+
class DiscriminatorS(torch.nn.Module):
|
412 |
+
def __init__(self, use_spectral_norm=False):
|
413 |
+
super(DiscriminatorS, self).__init__()
|
414 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
415 |
+
self.convs = nn.ModuleList([
|
416 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
417 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
418 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
419 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
420 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
421 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
422 |
+
])
|
423 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
424 |
+
|
425 |
+
def forward(self, x):
|
426 |
+
fmap = []
|
427 |
+
|
428 |
+
for l in self.convs:
|
429 |
+
x = l(x)
|
430 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
431 |
+
fmap.append(x)
|
432 |
+
x = self.conv_post(x)
|
433 |
+
fmap.append(x)
|
434 |
+
x = torch.flatten(x, 1, -1)
|
435 |
+
|
436 |
+
return x, fmap
|
437 |
+
|
438 |
+
|
439 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
440 |
+
def __init__(self, use_spectral_norm=False):
|
441 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
442 |
+
periods = [2, 3, 5, 7, 11]
|
443 |
+
|
444 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
445 |
+
discs = discs + [
|
446 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm)
|
447 |
+
for i in periods
|
448 |
+
]
|
449 |
+
self.discriminators = nn.ModuleList(discs)
|
450 |
+
|
451 |
+
def forward(self, y, y_hat):
|
452 |
+
y_d_rs = []
|
453 |
+
y_d_gs = []
|
454 |
+
fmap_rs = []
|
455 |
+
fmap_gs = []
|
456 |
+
for i, d in enumerate(self.discriminators):
|
457 |
+
y_d_r, fmap_r = d(y)
|
458 |
+
y_d_g, fmap_g = d(y_hat)
|
459 |
+
y_d_rs.append(y_d_r)
|
460 |
+
y_d_gs.append(y_d_g)
|
461 |
+
fmap_rs.append(fmap_r)
|
462 |
+
fmap_gs.append(fmap_g)
|
463 |
+
|
464 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
465 |
+
|
466 |
+
|
467 |
+
class SynthesizerTrn(nn.Module):
|
468 |
+
"""
|
469 |
+
Synthesizer for Training
|
470 |
+
"""
|
471 |
+
def __init__(self,
|
472 |
+
n_vocab,
|
473 |
+
spec_channels,
|
474 |
+
segment_size,
|
475 |
+
inter_channels,
|
476 |
+
hidden_channels,
|
477 |
+
filter_channels,
|
478 |
+
n_heads,
|
479 |
+
n_layers,
|
480 |
+
kernel_size,
|
481 |
+
p_dropout,
|
482 |
+
resblock,
|
483 |
+
resblock_kernel_sizes,
|
484 |
+
resblock_dilation_sizes,
|
485 |
+
upsample_rates,
|
486 |
+
upsample_initial_channel,
|
487 |
+
upsample_kernel_sizes,
|
488 |
+
n_speakers=0,
|
489 |
+
gin_channels=0,
|
490 |
+
use_sdp=True,
|
491 |
+
**kwargs):
|
492 |
+
|
493 |
+
super().__init__()
|
494 |
+
self.n_vocab = n_vocab
|
495 |
+
self.spec_channels = spec_channels
|
496 |
+
self.inter_channels = inter_channels
|
497 |
+
self.hidden_channels = hidden_channels
|
498 |
+
self.filter_channels = filter_channels
|
499 |
+
self.n_heads = n_heads
|
500 |
+
self.n_layers = n_layers
|
501 |
+
self.kernel_size = kernel_size
|
502 |
+
self.p_dropout = p_dropout
|
503 |
+
self.resblock = resblock
|
504 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
505 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
506 |
+
self.upsample_rates = upsample_rates
|
507 |
+
self.upsample_initial_channel = upsample_initial_channel
|
508 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
509 |
+
self.segment_size = segment_size
|
510 |
+
self.n_speakers = n_speakers
|
511 |
+
self.gin_channels = gin_channels
|
512 |
+
if self.n_speakers != 0:
|
513 |
+
message = "gin_channels must be none zero for multiple speakers"
|
514 |
+
assert gin_channels != 0, message
|
515 |
+
|
516 |
+
self.use_sdp = use_sdp
|
517 |
+
|
518 |
+
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels,
|
519 |
+
filter_channels, n_heads, n_layers,
|
520 |
+
kernel_size, p_dropout)
|
521 |
+
self.dec = Generator(inter_channels,
|
522 |
+
resblock,
|
523 |
+
resblock_kernel_sizes,
|
524 |
+
resblock_dilation_sizes,
|
525 |
+
upsample_rates,
|
526 |
+
upsample_initial_channel,
|
527 |
+
upsample_kernel_sizes,
|
528 |
+
gin_channels=gin_channels)
|
529 |
+
self.enc_q = PosteriorEncoder(spec_channels,
|
530 |
+
inter_channels,
|
531 |
+
hidden_channels,
|
532 |
+
5,
|
533 |
+
1,
|
534 |
+
16,
|
535 |
+
gin_channels=gin_channels)
|
536 |
+
self.flow = ResidualCouplingBlock(inter_channels,
|
537 |
+
hidden_channels,
|
538 |
+
5,
|
539 |
+
1,
|
540 |
+
4,
|
541 |
+
gin_channels=gin_channels)
|
542 |
+
|
543 |
+
if use_sdp:
|
544 |
+
self.dp = StochasticDurationPredictor(hidden_channels,
|
545 |
+
192,
|
546 |
+
3,
|
547 |
+
0.5,
|
548 |
+
4,
|
549 |
+
gin_channels=gin_channels)
|
550 |
+
else:
|
551 |
+
self.dp = DurationPredictor(hidden_channels,
|
552 |
+
256,
|
553 |
+
3,
|
554 |
+
0.5,
|
555 |
+
gin_channels=gin_channels)
|
556 |
+
|
557 |
+
if n_speakers > 1:
|
558 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
559 |
+
|
560 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
561 |
+
|
562 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
563 |
+
if self.n_speakers > 0:
|
564 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
565 |
+
else:
|
566 |
+
g = None
|
567 |
+
|
568 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
569 |
+
z_p = self.flow(z, y_mask, g=g)
|
570 |
+
|
571 |
+
with torch.no_grad():
|
572 |
+
# negative cross-entropy
|
573 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
574 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1],
|
575 |
+
keepdim=True) # [b, 1, t_s]
|
576 |
+
neg_cent2 = torch.matmul(
|
577 |
+
-0.5 * (z_p**2).transpose(1, 2),
|
578 |
+
s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
579 |
+
neg_cent3 = torch.matmul(
|
580 |
+
z_p.transpose(1, 2),
|
581 |
+
(m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
582 |
+
neg_cent4 = torch.sum(-0.5 * (m_p**2) * s_p_sq_r, [1],
|
583 |
+
keepdim=True) # [b, 1, t_s]
|
584 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
585 |
+
|
586 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(
|
587 |
+
y_mask, -1)
|
588 |
+
attn = monotonic_align.maximum_path(
|
589 |
+
neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
590 |
+
|
591 |
+
w = attn.sum(2)
|
592 |
+
if self.use_sdp:
|
593 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
594 |
+
l_length = l_length / torch.sum(x_mask)
|
595 |
+
else:
|
596 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
597 |
+
logw = self.dp(x, x_mask, g=g)
|
598 |
+
l_length = torch.sum(
|
599 |
+
(logw - logw_)**2, [1, 2]) / torch.sum(x_mask) # for averaging
|
600 |
+
|
601 |
+
# expand prior
|
602 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1,
|
603 |
+
2)).transpose(1, 2)
|
604 |
+
logs_p = torch.matmul(attn.squeeze(1),
|
605 |
+
logs_p.transpose(1, 2)).transpose(1, 2)
|
606 |
+
|
607 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
608 |
+
z, y_lengths, self.segment_size)
|
609 |
+
o = self.dec(z_slice, g=g)
|
610 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p,
|
611 |
+
logs_p, m_q,
|
612 |
+
logs_q)
|
613 |
+
|
614 |
+
def infer(self,
|
615 |
+
x,
|
616 |
+
x_lengths,
|
617 |
+
sid=None,
|
618 |
+
noise_scale=1,
|
619 |
+
length_scale=1,
|
620 |
+
noise_scale_w=1.,
|
621 |
+
max_len=None):
|
622 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
623 |
+
if self.n_speakers > 0:
|
624 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
625 |
+
else:
|
626 |
+
g = None
|
627 |
+
|
628 |
+
if self.use_sdp:
|
629 |
+
logw = self.dp(x,
|
630 |
+
x_mask,
|
631 |
+
g=g,
|
632 |
+
reverse=True,
|
633 |
+
noise_scale=noise_scale_w)
|
634 |
+
else:
|
635 |
+
logw = self.dp(x, x_mask, g=g)
|
636 |
+
w = torch.exp(logw) * x_mask * length_scale
|
637 |
+
w_ceil = torch.ceil(w)
|
638 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
639 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
|
640 |
+
1).to(x_mask.dtype)
|
641 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
642 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
643 |
+
|
644 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
645 |
+
1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
646 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(
|
647 |
+
1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
648 |
+
|
649 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
650 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
651 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
652 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
653 |
+
|
654 |
+
def export_forward(self, x, x_lengths, scales, sid):
|
655 |
+
# shape of scales: Bx3, make triton happy
|
656 |
+
audio, *_ = self.infer(x,
|
657 |
+
x_lengths,
|
658 |
+
sid,
|
659 |
+
noise_scale=scales[0][0],
|
660 |
+
length_scale=scales[0][1],
|
661 |
+
noise_scale_w=scales[0][2])
|
662 |
+
return audio
|
663 |
+
|
664 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
665 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
666 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
667 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
668 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
669 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
670 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
671 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
672 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
modules.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
|
13 |
+
LRELU_SLOPE = 0.1
|
14 |
+
|
15 |
+
|
16 |
+
class LayerNorm(nn.Module):
|
17 |
+
def __init__(self, channels, eps=1e-5):
|
18 |
+
super().__init__()
|
19 |
+
self.channels = channels
|
20 |
+
self.eps = eps
|
21 |
+
|
22 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
23 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = x.transpose(1, -1)
|
27 |
+
x = F.layer_norm(x, (self.channels, ), self.gamma, self.beta, self.eps)
|
28 |
+
return x.transpose(1, -1)
|
29 |
+
|
30 |
+
|
31 |
+
class ConvReluNorm(nn.Module):
|
32 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size,
|
33 |
+
n_layers, p_dropout):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.hidden_channels = hidden_channels
|
37 |
+
self.out_channels = out_channels
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.n_layers = n_layers
|
40 |
+
self.p_dropout = p_dropout
|
41 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
42 |
+
|
43 |
+
self.conv_layers = nn.ModuleList()
|
44 |
+
self.norm_layers = nn.ModuleList()
|
45 |
+
self.conv_layers.append(
|
46 |
+
nn.Conv1d(in_channels,
|
47 |
+
hidden_channels,
|
48 |
+
kernel_size,
|
49 |
+
padding=kernel_size // 2))
|
50 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
51 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers - 1):
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(hidden_channels,
|
55 |
+
hidden_channels,
|
56 |
+
kernel_size,
|
57 |
+
padding=kernel_size // 2))
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
60 |
+
self.proj.weight.data.zero_()
|
61 |
+
self.proj.bias.data.zero_()
|
62 |
+
|
63 |
+
def forward(self, x, x_mask):
|
64 |
+
x_org = x
|
65 |
+
for i in range(self.n_layers):
|
66 |
+
x = self.conv_layers[i](x * x_mask)
|
67 |
+
x = self.norm_layers[i](x)
|
68 |
+
x = self.relu_drop(x)
|
69 |
+
x = x_org + self.proj(x)
|
70 |
+
return x * x_mask
|
71 |
+
|
72 |
+
|
73 |
+
class DDSConv(nn.Module):
|
74 |
+
"""
|
75 |
+
Dialted and Depth-Separable Convolution
|
76 |
+
"""
|
77 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.kernel_size = kernel_size
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.p_dropout = p_dropout
|
83 |
+
|
84 |
+
self.drop = nn.Dropout(p_dropout)
|
85 |
+
self.convs_sep = nn.ModuleList()
|
86 |
+
self.convs_1x1 = nn.ModuleList()
|
87 |
+
self.norms_1 = nn.ModuleList()
|
88 |
+
self.norms_2 = nn.ModuleList()
|
89 |
+
for i in range(n_layers):
|
90 |
+
dilation = kernel_size**i
|
91 |
+
padding = (kernel_size * dilation - dilation) // 2
|
92 |
+
self.convs_sep.append(
|
93 |
+
nn.Conv1d(channels,
|
94 |
+
channels,
|
95 |
+
kernel_size,
|
96 |
+
groups=channels,
|
97 |
+
dilation=dilation,
|
98 |
+
padding=padding))
|
99 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
100 |
+
self.norms_1.append(LayerNorm(channels))
|
101 |
+
self.norms_2.append(LayerNorm(channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
if g is not None:
|
105 |
+
x = x + g
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
y = self.convs_sep[i](x * x_mask)
|
108 |
+
y = self.norms_1[i](y)
|
109 |
+
y = F.gelu(y)
|
110 |
+
y = self.convs_1x1[i](y)
|
111 |
+
y = self.norms_2[i](y)
|
112 |
+
y = F.gelu(y)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = x + y
|
115 |
+
return x * x_mask
|
116 |
+
|
117 |
+
|
118 |
+
class WN(torch.nn.Module):
|
119 |
+
def __init__(self,
|
120 |
+
hidden_channels,
|
121 |
+
kernel_size,
|
122 |
+
dilation_rate,
|
123 |
+
n_layers,
|
124 |
+
gin_channels=0,
|
125 |
+
p_dropout=0):
|
126 |
+
super(WN, self).__init__()
|
127 |
+
assert (kernel_size % 2 == 1)
|
128 |
+
self.hidden_channels = hidden_channels
|
129 |
+
self.kernel_size = kernel_size,
|
130 |
+
self.dilation_rate = dilation_rate
|
131 |
+
self.n_layers = n_layers
|
132 |
+
self.gin_channels = gin_channels
|
133 |
+
self.p_dropout = p_dropout
|
134 |
+
|
135 |
+
self.in_layers = torch.nn.ModuleList()
|
136 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
137 |
+
self.drop = nn.Dropout(p_dropout)
|
138 |
+
|
139 |
+
if gin_channels != 0:
|
140 |
+
cond_layer = torch.nn.Conv1d(gin_channels,
|
141 |
+
2 * hidden_channels * n_layers, 1)
|
142 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer,
|
143 |
+
name='weight')
|
144 |
+
|
145 |
+
for i in range(n_layers):
|
146 |
+
dilation = dilation_rate**i
|
147 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
148 |
+
in_layer = torch.nn.Conv1d(hidden_channels,
|
149 |
+
2 * hidden_channels,
|
150 |
+
kernel_size,
|
151 |
+
dilation=dilation,
|
152 |
+
padding=padding)
|
153 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
154 |
+
self.in_layers.append(in_layer)
|
155 |
+
|
156 |
+
# last one is not necessary
|
157 |
+
if i < n_layers - 1:
|
158 |
+
res_skip_channels = 2 * hidden_channels
|
159 |
+
else:
|
160 |
+
res_skip_channels = hidden_channels
|
161 |
+
|
162 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels,
|
163 |
+
res_skip_channels, 1)
|
164 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer,
|
165 |
+
name='weight')
|
166 |
+
self.res_skip_layers.append(res_skip_layer)
|
167 |
+
|
168 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
169 |
+
output = torch.zeros_like(x)
|
170 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
171 |
+
|
172 |
+
if g is not None:
|
173 |
+
g = self.cond_layer(g)
|
174 |
+
|
175 |
+
for i in range(self.n_layers):
|
176 |
+
x_in = self.in_layers[i](x)
|
177 |
+
if g is not None:
|
178 |
+
cond_offset = i * 2 * self.hidden_channels
|
179 |
+
g_l = g[:,
|
180 |
+
cond_offset:cond_offset + 2 * self.hidden_channels, :]
|
181 |
+
else:
|
182 |
+
g_l = torch.zeros_like(x_in)
|
183 |
+
|
184 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
185 |
+
x_in, g_l, n_channels_tensor)
|
186 |
+
acts = self.drop(acts)
|
187 |
+
|
188 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
189 |
+
if i < self.n_layers - 1:
|
190 |
+
res_acts = res_skip_acts[:, :self.hidden_channels, :]
|
191 |
+
x = (x + res_acts) * x_mask
|
192 |
+
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
193 |
+
else:
|
194 |
+
output = output + res_skip_acts
|
195 |
+
return output * x_mask
|
196 |
+
|
197 |
+
def remove_weight_norm(self):
|
198 |
+
if self.gin_channels != 0:
|
199 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
200 |
+
for l in self.in_layers:
|
201 |
+
torch.nn.utils.remove_weight_norm(l)
|
202 |
+
for l in self.res_skip_layers:
|
203 |
+
torch.nn.utils.remove_weight_norm(l)
|
204 |
+
|
205 |
+
|
206 |
+
class ResBlock1(torch.nn.Module):
|
207 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
208 |
+
super(ResBlock1, self).__init__()
|
209 |
+
self.convs1 = nn.ModuleList([
|
210 |
+
weight_norm(
|
211 |
+
Conv1d(channels,
|
212 |
+
channels,
|
213 |
+
kernel_size,
|
214 |
+
1,
|
215 |
+
dilation=dilation[0],
|
216 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
217 |
+
weight_norm(
|
218 |
+
Conv1d(channels,
|
219 |
+
channels,
|
220 |
+
kernel_size,
|
221 |
+
1,
|
222 |
+
dilation=dilation[1],
|
223 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
224 |
+
weight_norm(
|
225 |
+
Conv1d(channels,
|
226 |
+
channels,
|
227 |
+
kernel_size,
|
228 |
+
1,
|
229 |
+
dilation=dilation[2],
|
230 |
+
padding=get_padding(kernel_size, dilation[2])))
|
231 |
+
])
|
232 |
+
self.convs1.apply(init_weights)
|
233 |
+
|
234 |
+
self.convs2 = nn.ModuleList([
|
235 |
+
weight_norm(
|
236 |
+
Conv1d(channels,
|
237 |
+
channels,
|
238 |
+
kernel_size,
|
239 |
+
1,
|
240 |
+
dilation=1,
|
241 |
+
padding=get_padding(kernel_size, 1))),
|
242 |
+
weight_norm(
|
243 |
+
Conv1d(channels,
|
244 |
+
channels,
|
245 |
+
kernel_size,
|
246 |
+
1,
|
247 |
+
dilation=1,
|
248 |
+
padding=get_padding(kernel_size, 1))),
|
249 |
+
weight_norm(
|
250 |
+
Conv1d(channels,
|
251 |
+
channels,
|
252 |
+
kernel_size,
|
253 |
+
1,
|
254 |
+
dilation=1,
|
255 |
+
padding=get_padding(kernel_size, 1)))
|
256 |
+
])
|
257 |
+
self.convs2.apply(init_weights)
|
258 |
+
|
259 |
+
def forward(self, x, x_mask=None):
|
260 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
261 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
262 |
+
if x_mask is not None:
|
263 |
+
xt = xt * x_mask
|
264 |
+
xt = c1(xt)
|
265 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
266 |
+
if x_mask is not None:
|
267 |
+
xt = xt * x_mask
|
268 |
+
xt = c2(xt)
|
269 |
+
x = xt + x
|
270 |
+
if x_mask is not None:
|
271 |
+
x = x * x_mask
|
272 |
+
return x
|
273 |
+
|
274 |
+
def remove_weight_norm(self):
|
275 |
+
for l in self.convs1:
|
276 |
+
remove_weight_norm(l)
|
277 |
+
for l in self.convs2:
|
278 |
+
remove_weight_norm(l)
|
279 |
+
|
280 |
+
|
281 |
+
class ResBlock2(torch.nn.Module):
|
282 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
283 |
+
super(ResBlock2, self).__init__()
|
284 |
+
self.convs = nn.ModuleList([
|
285 |
+
weight_norm(
|
286 |
+
Conv1d(channels,
|
287 |
+
channels,
|
288 |
+
kernel_size,
|
289 |
+
1,
|
290 |
+
dilation=dilation[0],
|
291 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
292 |
+
weight_norm(
|
293 |
+
Conv1d(channels,
|
294 |
+
channels,
|
295 |
+
kernel_size,
|
296 |
+
1,
|
297 |
+
dilation=dilation[1],
|
298 |
+
padding=get_padding(kernel_size, dilation[1])))
|
299 |
+
])
|
300 |
+
self.convs.apply(init_weights)
|
301 |
+
|
302 |
+
def forward(self, x, x_mask=None):
|
303 |
+
for c in self.convs:
|
304 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
305 |
+
if x_mask is not None:
|
306 |
+
xt = xt * x_mask
|
307 |
+
xt = c(xt)
|
308 |
+
x = xt + x
|
309 |
+
if x_mask is not None:
|
310 |
+
x = x * x_mask
|
311 |
+
return x
|
312 |
+
|
313 |
+
def remove_weight_norm(self):
|
314 |
+
for l in self.convs:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
|
317 |
+
|
318 |
+
class Log(nn.Module):
|
319 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
320 |
+
if not reverse:
|
321 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
322 |
+
logdet = torch.sum(-y, [1, 2])
|
323 |
+
return y, logdet
|
324 |
+
else:
|
325 |
+
x = torch.exp(x) * x_mask
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
+
class Flip(nn.Module):
|
330 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
331 |
+
x = torch.flip(x, [1])
|
332 |
+
if not reverse:
|
333 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
334 |
+
return x, logdet
|
335 |
+
else:
|
336 |
+
return x
|
337 |
+
|
338 |
+
|
339 |
+
class ElementwiseAffine(nn.Module):
|
340 |
+
def __init__(self, channels):
|
341 |
+
super().__init__()
|
342 |
+
self.channels = channels
|
343 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
344 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
345 |
+
|
346 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
347 |
+
if not reverse:
|
348 |
+
y = self.m + torch.exp(self.logs) * x
|
349 |
+
y = y * x_mask
|
350 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
351 |
+
return y, logdet
|
352 |
+
else:
|
353 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
354 |
+
return x
|
355 |
+
|
356 |
+
|
357 |
+
class ResidualCouplingLayer(nn.Module):
|
358 |
+
def __init__(self,
|
359 |
+
channels,
|
360 |
+
hidden_channels,
|
361 |
+
kernel_size,
|
362 |
+
dilation_rate,
|
363 |
+
n_layers,
|
364 |
+
p_dropout=0,
|
365 |
+
gin_channels=0,
|
366 |
+
mean_only=False):
|
367 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
368 |
+
super().__init__()
|
369 |
+
self.channels = channels
|
370 |
+
self.hidden_channels = hidden_channels
|
371 |
+
self.kernel_size = kernel_size
|
372 |
+
self.dilation_rate = dilation_rate
|
373 |
+
self.n_layers = n_layers
|
374 |
+
self.half_channels = channels // 2
|
375 |
+
self.mean_only = mean_only
|
376 |
+
|
377 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
378 |
+
self.enc = WN(hidden_channels,
|
379 |
+
kernel_size,
|
380 |
+
dilation_rate,
|
381 |
+
n_layers,
|
382 |
+
p_dropout=p_dropout,
|
383 |
+
gin_channels=gin_channels)
|
384 |
+
self.post = nn.Conv1d(hidden_channels,
|
385 |
+
self.half_channels * (2 - mean_only), 1)
|
386 |
+
self.post.weight.data.zero_()
|
387 |
+
self.post.bias.data.zero_()
|
388 |
+
|
389 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
390 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
391 |
+
h = self.pre(x0) * x_mask
|
392 |
+
h = self.enc(h, x_mask, g=g)
|
393 |
+
stats = self.post(h) * x_mask
|
394 |
+
if not self.mean_only:
|
395 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
396 |
+
else:
|
397 |
+
m = stats
|
398 |
+
logs = torch.zeros_like(m)
|
399 |
+
|
400 |
+
if not reverse:
|
401 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
402 |
+
x = torch.cat([x0, x1], 1)
|
403 |
+
logdet = torch.sum(logs, [1, 2])
|
404 |
+
return x, logdet
|
405 |
+
else:
|
406 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
407 |
+
x = torch.cat([x0, x1], 1)
|
408 |
+
return x
|
409 |
+
|
410 |
+
|
411 |
+
class ConvFlow(nn.Module):
|
412 |
+
def __init__(self,
|
413 |
+
in_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
n_layers,
|
417 |
+
num_bins=10,
|
418 |
+
tail_bound=5.0):
|
419 |
+
super().__init__()
|
420 |
+
self.in_channels = in_channels
|
421 |
+
self.filter_channels = filter_channels
|
422 |
+
self.kernel_size = kernel_size
|
423 |
+
self.n_layers = n_layers
|
424 |
+
self.num_bins = num_bins
|
425 |
+
self.tail_bound = tail_bound
|
426 |
+
self.half_channels = in_channels // 2
|
427 |
+
|
428 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
429 |
+
self.convs = DDSConv(filter_channels,
|
430 |
+
kernel_size,
|
431 |
+
n_layers,
|
432 |
+
p_dropout=0.)
|
433 |
+
self.proj = nn.Conv1d(filter_channels,
|
434 |
+
self.half_channels * (num_bins * 3 - 1), 1)
|
435 |
+
self.proj.weight.data.zero_()
|
436 |
+
self.proj.bias.data.zero_()
|
437 |
+
|
438 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
439 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
440 |
+
h = self.pre(x0)
|
441 |
+
h = self.convs(h, x_mask, g=g)
|
442 |
+
h = self.proj(h) * x_mask
|
443 |
+
|
444 |
+
b, c, t = x0.shape
|
445 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3,
|
446 |
+
2) # [b, cx?, t] -> [b, c, t, ?]
|
447 |
+
|
448 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(
|
449 |
+
self.filter_channels)
|
450 |
+
unnormalized_heights = h[...,
|
451 |
+
self.num_bins:2 * self.num_bins] / math.sqrt(
|
452 |
+
self.filter_channels)
|
453 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
454 |
+
|
455 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
456 |
+
x1,
|
457 |
+
unnormalized_widths,
|
458 |
+
unnormalized_heights,
|
459 |
+
unnormalized_derivatives,
|
460 |
+
inverse=reverse,
|
461 |
+
tails='linear',
|
462 |
+
tail_bound=self.tail_bound)
|
463 |
+
|
464 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
465 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
466 |
+
if not reverse:
|
467 |
+
return x, logdet
|
468 |
+
else:
|
469 |
+
return x
|
moe/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/chatglm-6b",
|
3 |
+
"architectures": [
|
4 |
+
"ChatGLMModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
8 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"bos_token_id": 150004,
|
12 |
+
"eos_token_id": 150005,
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"inner_hidden_size": 16384,
|
15 |
+
"layernorm_epsilon": 1e-05,
|
16 |
+
"max_sequence_length": 2048,
|
17 |
+
"model_type": "chatglm",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_layers": 28,
|
20 |
+
"position_encoding_2d": true,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.23.1",
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 150528
|
25 |
+
}
|
moe/configuration_chatglm.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ChatGLM model configuration """
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class ChatGLMConfig(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
+
for more information.
|
19 |
+
|
20 |
+
|
21 |
+
Args:
|
22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
+
[`~TFChatGLMModel`].
|
26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
+
Dimension of the encoder layers and the pooler layer.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with.
|
36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
+
The epsilon used by the layer normalization layers.
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
+
Example:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
46 |
+
|
47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
+
>>> configuration = ChatGLMConfig()
|
49 |
+
|
50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
+
>>> model = ChatGLMModel(configuration)
|
52 |
+
|
53 |
+
>>> # Accessing the model configuration
|
54 |
+
>>> configuration = model.config
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
model_type = "chatglm"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_size=150528,
|
62 |
+
hidden_size=4096,
|
63 |
+
num_layers=28,
|
64 |
+
num_attention_heads=32,
|
65 |
+
layernorm_epsilon=1e-5,
|
66 |
+
use_cache=False,
|
67 |
+
bos_token_id=150004,
|
68 |
+
eos_token_id=150005,
|
69 |
+
pad_token_id=0,
|
70 |
+
max_sequence_length=2048,
|
71 |
+
inner_hidden_size=16384,
|
72 |
+
position_encoding_2d=True,
|
73 |
+
**kwargs
|
74 |
+
):
|
75 |
+
self.num_layers = num_layers
|
76 |
+
self.vocab_size = vocab_size
|
77 |
+
self.hidden_size = hidden_size
|
78 |
+
self.num_attention_heads = num_attention_heads
|
79 |
+
self.max_sequence_length = max_sequence_length
|
80 |
+
self.layernorm_epsilon = layernorm_epsilon
|
81 |
+
self.inner_hidden_size = inner_hidden_size
|
82 |
+
self.use_cache = use_cache
|
83 |
+
self.bos_token_id = bos_token_id
|
84 |
+
self.eos_token_id = eos_token_id
|
85 |
+
self.pad_token_id = pad_token_id
|
86 |
+
self.position_encoding_2d = position_encoding_2d
|
87 |
+
super().__init__(
|
88 |
+
pad_token_id=pad_token_id,
|
89 |
+
bos_token_id=bos_token_id,
|
90 |
+
eos_token_id=eos_token_id,
|
91 |
+
**kwargs
|
92 |
+
)
|
moe/modeling_chatglm.py
ADDED
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import os
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
12 |
+
from torch.nn.utils import skip_init
|
13 |
+
from typing import Optional, Tuple, Union, List
|
14 |
+
|
15 |
+
from transformers.utils import (
|
16 |
+
add_code_sample_docstrings,
|
17 |
+
add_start_docstrings,
|
18 |
+
add_start_docstrings_to_model_forward,
|
19 |
+
)
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutputWithPast,
|
22 |
+
CausalLMOutputWithPast,
|
23 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
24 |
+
)
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
|
27 |
+
from transformers.utils import logging
|
28 |
+
from .configuration_chatglm import ChatGLMConfig
|
29 |
+
|
30 |
+
# flags required to enable jit fusion kernels
|
31 |
+
torch._C._jit_set_profiling_mode(False)
|
32 |
+
torch._C._jit_set_profiling_executor(False)
|
33 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
34 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
39 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
40 |
+
|
41 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
42 |
+
"THUDM/chatglm-6b",
|
43 |
+
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
48 |
+
"""Load tf checkpoints in a pytorch model."""
|
49 |
+
try:
|
50 |
+
import re
|
51 |
+
|
52 |
+
import numpy as np
|
53 |
+
import tensorflow as tf
|
54 |
+
except ImportError:
|
55 |
+
logger.error(
|
56 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
57 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
58 |
+
)
|
59 |
+
raise
|
60 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
61 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
62 |
+
# Load weights from TF model
|
63 |
+
init_vars = tf.train.list_variables(tf_path)
|
64 |
+
names = []
|
65 |
+
arrays = []
|
66 |
+
for name, shape in init_vars:
|
67 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
68 |
+
array = tf.train.load_variable(tf_path, name)
|
69 |
+
names.append(name)
|
70 |
+
arrays.append(array)
|
71 |
+
|
72 |
+
for name, array in zip(names, arrays):
|
73 |
+
name = name.split("/")
|
74 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
75 |
+
# which are not required for using pretrained model
|
76 |
+
if any(
|
77 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
78 |
+
for n in name
|
79 |
+
):
|
80 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
81 |
+
continue
|
82 |
+
pointer = model
|
83 |
+
for m_name in name:
|
84 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
85 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
86 |
+
else:
|
87 |
+
scope_names = [m_name]
|
88 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
89 |
+
pointer = getattr(pointer, "weight")
|
90 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
91 |
+
pointer = getattr(pointer, "bias")
|
92 |
+
elif scope_names[0] == "output_weights":
|
93 |
+
pointer = getattr(pointer, "weight")
|
94 |
+
elif scope_names[0] == "squad":
|
95 |
+
pointer = getattr(pointer, "classifier")
|
96 |
+
else:
|
97 |
+
try:
|
98 |
+
pointer = getattr(pointer, scope_names[0])
|
99 |
+
except AttributeError:
|
100 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
101 |
+
continue
|
102 |
+
if len(scope_names) >= 2:
|
103 |
+
num = int(scope_names[1])
|
104 |
+
pointer = pointer[num]
|
105 |
+
if m_name[-11:] == "_embeddings":
|
106 |
+
pointer = getattr(pointer, "weight")
|
107 |
+
elif m_name == "kernel":
|
108 |
+
array = np.transpose(array)
|
109 |
+
try:
|
110 |
+
assert (
|
111 |
+
pointer.shape == array.shape
|
112 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
113 |
+
except AssertionError as e:
|
114 |
+
e.args += (pointer.shape, array.shape)
|
115 |
+
raise
|
116 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
117 |
+
pointer.data = torch.from_numpy(array)
|
118 |
+
return model
|
119 |
+
|
120 |
+
|
121 |
+
@torch.jit.script
|
122 |
+
def gelu_impl(x):
|
123 |
+
"""OpenAI's gelu implementation."""
|
124 |
+
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
125 |
+
(1.0 + 0.044715 * x * x)))
|
126 |
+
|
127 |
+
|
128 |
+
def gelu(x):
|
129 |
+
return gelu_impl(x)
|
130 |
+
|
131 |
+
|
132 |
+
class RotaryEmbedding(torch.nn.Module):
|
133 |
+
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
134 |
+
super().__init__()
|
135 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
136 |
+
inv_freq = inv_freq.half()
|
137 |
+
self.learnable = learnable
|
138 |
+
if learnable:
|
139 |
+
self.inv_freq = torch.nn.Parameter(inv_freq)
|
140 |
+
self.max_seq_len_cached = None
|
141 |
+
else:
|
142 |
+
self.register_buffer('inv_freq', inv_freq)
|
143 |
+
self.max_seq_len_cached = None
|
144 |
+
self.cos_cached = None
|
145 |
+
self.sin_cached = None
|
146 |
+
self.precision = precision
|
147 |
+
|
148 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
149 |
+
error_msgs):
|
150 |
+
pass
|
151 |
+
|
152 |
+
def forward(self, x, seq_dim=1, seq_len=None):
|
153 |
+
if seq_len is None:
|
154 |
+
seq_len = x.shape[seq_dim]
|
155 |
+
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
156 |
+
self.max_seq_len_cached = None if self.learnable else seq_len
|
157 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
158 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
159 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
160 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
161 |
+
if self.precision == torch.bfloat16:
|
162 |
+
emb = emb.float()
|
163 |
+
|
164 |
+
# [sx, 1 (b * np), hn]
|
165 |
+
cos_cached = emb.cos()[:, None, :]
|
166 |
+
sin_cached = emb.sin()[:, None, :]
|
167 |
+
if self.precision == torch.bfloat16:
|
168 |
+
cos_cached = cos_cached.bfloat16()
|
169 |
+
sin_cached = sin_cached.bfloat16()
|
170 |
+
if self.learnable:
|
171 |
+
return cos_cached, sin_cached
|
172 |
+
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
173 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
174 |
+
|
175 |
+
|
176 |
+
def rotate_half(x):
|
177 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
178 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
179 |
+
|
180 |
+
|
181 |
+
@torch.jit.script
|
182 |
+
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
183 |
+
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
184 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
185 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
186 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
187 |
+
return q, k
|
188 |
+
|
189 |
+
|
190 |
+
def attention_fn(
|
191 |
+
self,
|
192 |
+
query_layer,
|
193 |
+
key_layer,
|
194 |
+
value_layer,
|
195 |
+
attention_mask,
|
196 |
+
hidden_size_per_partition,
|
197 |
+
layer_id,
|
198 |
+
layer_past=None,
|
199 |
+
scaling_attention_score=True,
|
200 |
+
use_cache=False,
|
201 |
+
):
|
202 |
+
if layer_past is not None:
|
203 |
+
past_key, past_value = layer_past
|
204 |
+
key_layer = torch.cat((past_key, key_layer), dim=0)
|
205 |
+
value_layer = torch.cat((past_value, value_layer), dim=0)
|
206 |
+
|
207 |
+
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
208 |
+
seq_len, b, nh, hidden_size = key_layer.shape
|
209 |
+
|
210 |
+
if use_cache:
|
211 |
+
present = (key_layer, value_layer)
|
212 |
+
else:
|
213 |
+
present = None
|
214 |
+
|
215 |
+
query_key_layer_scaling_coeff = float(layer_id + 1)
|
216 |
+
if scaling_attention_score:
|
217 |
+
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
218 |
+
|
219 |
+
# ===================================
|
220 |
+
# Raw attention scores. [b, np, s, s]
|
221 |
+
# ===================================
|
222 |
+
|
223 |
+
# [b, np, sq, sk]
|
224 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
225 |
+
|
226 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
227 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
228 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
229 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
230 |
+
|
231 |
+
matmul_result = torch.empty(
|
232 |
+
output_size[0] * output_size[1],
|
233 |
+
output_size[2],
|
234 |
+
output_size[3],
|
235 |
+
dtype=query_layer.dtype,
|
236 |
+
device=query_layer.device,
|
237 |
+
)
|
238 |
+
|
239 |
+
matmul_result = torch.baddbmm(
|
240 |
+
matmul_result,
|
241 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
242 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
243 |
+
beta=0.0,
|
244 |
+
alpha=1.0,
|
245 |
+
)
|
246 |
+
|
247 |
+
# change view to [b, np, sq, sk]
|
248 |
+
attention_scores = matmul_result.view(*output_size)
|
249 |
+
|
250 |
+
if self.scale_mask_softmax:
|
251 |
+
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
252 |
+
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
253 |
+
else:
|
254 |
+
if not (attention_mask == 0).all():
|
255 |
+
# if auto-regressive, skip
|
256 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
257 |
+
dtype = attention_scores.type()
|
258 |
+
attention_scores = attention_scores.float()
|
259 |
+
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
260 |
+
|
261 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
262 |
+
|
263 |
+
attention_probs = attention_probs.type(dtype)
|
264 |
+
|
265 |
+
# =========================
|
266 |
+
# Context layer. [sq, b, hp]
|
267 |
+
# =========================
|
268 |
+
|
269 |
+
# value_layer -> context layer.
|
270 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
271 |
+
|
272 |
+
# context layer shape: [b, np, sq, hn]
|
273 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
274 |
+
|
275 |
+
# change view [sk, b * np, hn]
|
276 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
277 |
+
|
278 |
+
# change view [b * np, sq, sk]
|
279 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
280 |
+
|
281 |
+
# matmul: [b * np, sq, hn]
|
282 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
283 |
+
|
284 |
+
# change view [b, np, sq, hn]
|
285 |
+
context_layer = context_layer.view(*output_size)
|
286 |
+
|
287 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
288 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
289 |
+
|
290 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
291 |
+
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
292 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
293 |
+
|
294 |
+
outputs = (context_layer, present, attention_probs)
|
295 |
+
|
296 |
+
return outputs
|
297 |
+
|
298 |
+
|
299 |
+
class SelfAttention(torch.nn.Module):
|
300 |
+
def __init__(self, hidden_size, num_attention_heads,
|
301 |
+
layer_id, hidden_size_per_attention_head=None, bias=True,
|
302 |
+
params_dtype=torch.float, position_encoding_2d=True):
|
303 |
+
super(SelfAttention, self).__init__()
|
304 |
+
|
305 |
+
self.layer_id = layer_id
|
306 |
+
self.hidden_size = hidden_size
|
307 |
+
self.hidden_size_per_partition = hidden_size
|
308 |
+
self.num_attention_heads = num_attention_heads
|
309 |
+
self.num_attention_heads_per_partition = num_attention_heads
|
310 |
+
self.position_encoding_2d = position_encoding_2d
|
311 |
+
self.rotary_emb = RotaryEmbedding(
|
312 |
+
self.hidden_size // (self.num_attention_heads * 2)
|
313 |
+
if position_encoding_2d
|
314 |
+
else self.hidden_size // self.num_attention_heads,
|
315 |
+
base=10000,
|
316 |
+
precision=torch.half,
|
317 |
+
learnable=False,
|
318 |
+
)
|
319 |
+
|
320 |
+
self.scale_mask_softmax = None
|
321 |
+
|
322 |
+
if hidden_size_per_attention_head is None:
|
323 |
+
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
324 |
+
else:
|
325 |
+
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
326 |
+
|
327 |
+
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
328 |
+
|
329 |
+
# Strided linear layer.
|
330 |
+
self.query_key_value = skip_init(
|
331 |
+
torch.nn.Linear,
|
332 |
+
hidden_size,
|
333 |
+
3 * self.inner_hidden_size,
|
334 |
+
bias=bias,
|
335 |
+
dtype=params_dtype,
|
336 |
+
)
|
337 |
+
|
338 |
+
self.dense = skip_init(
|
339 |
+
torch.nn.Linear,
|
340 |
+
self.inner_hidden_size,
|
341 |
+
hidden_size,
|
342 |
+
bias=bias,
|
343 |
+
dtype=params_dtype,
|
344 |
+
)
|
345 |
+
|
346 |
+
@staticmethod
|
347 |
+
def attention_mask_func(attention_scores, attention_mask):
|
348 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
349 |
+
return attention_scores
|
350 |
+
|
351 |
+
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
352 |
+
contiguous_split_chunks=False):
|
353 |
+
"""Split a tensor along its last dimension.
|
354 |
+
Arguments:
|
355 |
+
tensor: input tensor.
|
356 |
+
num_partitions: number of partitions to split the tensor
|
357 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
358 |
+
in memory.
|
359 |
+
"""
|
360 |
+
# Get the size and dimension.
|
361 |
+
last_dim = tensor.dim() - 1
|
362 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
363 |
+
# Split.
|
364 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
365 |
+
# Note: torch.split does not create contiguous tensors by default.
|
366 |
+
if contiguous_split_chunks:
|
367 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
368 |
+
|
369 |
+
return tensor_list
|
370 |
+
|
371 |
+
def forward(
|
372 |
+
self,
|
373 |
+
hidden_states: torch.Tensor,
|
374 |
+
position_ids,
|
375 |
+
attention_mask: torch.Tensor,
|
376 |
+
layer_id,
|
377 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
378 |
+
use_cache: bool = False,
|
379 |
+
output_attentions: bool = False,
|
380 |
+
):
|
381 |
+
"""
|
382 |
+
hidden_states: [seq_len, batch, hidden_size]
|
383 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
384 |
+
"""
|
385 |
+
|
386 |
+
# [seq_len, batch, 3 * hidden_size]
|
387 |
+
mixed_raw_layer = self.query_key_value(hidden_states)
|
388 |
+
|
389 |
+
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
390 |
+
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
391 |
+
self.num_attention_heads_per_partition,
|
392 |
+
3 * self.hidden_size_per_attention_head,
|
393 |
+
)
|
394 |
+
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
395 |
+
|
396 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
397 |
+
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
398 |
+
|
399 |
+
if self.position_encoding_2d:
|
400 |
+
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
401 |
+
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
402 |
+
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
403 |
+
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
404 |
+
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
405 |
+
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
406 |
+
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
407 |
+
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
408 |
+
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
409 |
+
else:
|
410 |
+
position_ids = position_ids.transpose(0, 1)
|
411 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
412 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
413 |
+
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
414 |
+
|
415 |
+
# [seq_len, batch, hidden_size]
|
416 |
+
context_layer, present, attention_probs = attention_fn(
|
417 |
+
self=self,
|
418 |
+
query_layer=query_layer,
|
419 |
+
key_layer=key_layer,
|
420 |
+
value_layer=value_layer,
|
421 |
+
attention_mask=attention_mask,
|
422 |
+
hidden_size_per_partition=self.hidden_size_per_partition,
|
423 |
+
layer_id=layer_id,
|
424 |
+
layer_past=layer_past,
|
425 |
+
use_cache=use_cache
|
426 |
+
)
|
427 |
+
|
428 |
+
output = self.dense(context_layer)
|
429 |
+
|
430 |
+
outputs = (output, present)
|
431 |
+
|
432 |
+
if output_attentions:
|
433 |
+
outputs += (attention_probs,)
|
434 |
+
|
435 |
+
return outputs # output, present, attention_probs
|
436 |
+
|
437 |
+
|
438 |
+
class GEGLU(torch.nn.Module):
|
439 |
+
def __init__(self):
|
440 |
+
super().__init__()
|
441 |
+
self.activation_fn = F.gelu
|
442 |
+
|
443 |
+
def forward(self, x):
|
444 |
+
# dim=-1 breaks in jit for pt<1.10
|
445 |
+
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
446 |
+
return x1 * self.activation_fn(x2)
|
447 |
+
|
448 |
+
|
449 |
+
class GLU(torch.nn.Module):
|
450 |
+
def __init__(self, hidden_size, inner_hidden_size=None,
|
451 |
+
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
|
452 |
+
super(GLU, self).__init__()
|
453 |
+
self.layer_id = layer_id
|
454 |
+
self.activation_func = activation_func
|
455 |
+
|
456 |
+
# Project to 4h.
|
457 |
+
self.hidden_size = hidden_size
|
458 |
+
if inner_hidden_size is None:
|
459 |
+
inner_hidden_size = 4 * hidden_size
|
460 |
+
self.inner_hidden_size = inner_hidden_size
|
461 |
+
self.dense_h_to_4h = skip_init(
|
462 |
+
torch.nn.Linear,
|
463 |
+
self.hidden_size,
|
464 |
+
self.inner_hidden_size,
|
465 |
+
bias=bias,
|
466 |
+
dtype=params_dtype,
|
467 |
+
)
|
468 |
+
# Project back to h.
|
469 |
+
self.dense_4h_to_h = skip_init(
|
470 |
+
torch.nn.Linear,
|
471 |
+
self.inner_hidden_size,
|
472 |
+
self.hidden_size,
|
473 |
+
bias=bias,
|
474 |
+
dtype=params_dtype,
|
475 |
+
)
|
476 |
+
|
477 |
+
def forward(self, hidden_states):
|
478 |
+
"""
|
479 |
+
hidden_states: [seq_len, batch, hidden_size]
|
480 |
+
"""
|
481 |
+
|
482 |
+
# [seq_len, batch, inner_hidden_size]
|
483 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
484 |
+
|
485 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
486 |
+
|
487 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
488 |
+
|
489 |
+
return output
|
490 |
+
|
491 |
+
|
492 |
+
class GLMBlock(torch.nn.Module):
|
493 |
+
def __init__(
|
494 |
+
self,
|
495 |
+
hidden_size,
|
496 |
+
num_attention_heads,
|
497 |
+
layernorm_epsilon,
|
498 |
+
layer_id,
|
499 |
+
inner_hidden_size=None,
|
500 |
+
hidden_size_per_attention_head=None,
|
501 |
+
layernorm=LayerNorm,
|
502 |
+
use_bias=True,
|
503 |
+
params_dtype=torch.float,
|
504 |
+
num_layers=28,
|
505 |
+
position_encoding_2d=True
|
506 |
+
):
|
507 |
+
super(GLMBlock, self).__init__()
|
508 |
+
# Set output layer initialization if not provided.
|
509 |
+
|
510 |
+
self.layer_id = layer_id
|
511 |
+
|
512 |
+
# Layernorm on the input data.
|
513 |
+
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
514 |
+
|
515 |
+
self.position_encoding_2d = position_encoding_2d
|
516 |
+
|
517 |
+
# Self attention.
|
518 |
+
self.attention = SelfAttention(
|
519 |
+
hidden_size,
|
520 |
+
num_attention_heads,
|
521 |
+
layer_id,
|
522 |
+
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
523 |
+
bias=use_bias,
|
524 |
+
params_dtype=params_dtype,
|
525 |
+
position_encoding_2d=self.position_encoding_2d
|
526 |
+
)
|
527 |
+
|
528 |
+
# Layernorm on the input data.
|
529 |
+
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
530 |
+
|
531 |
+
self.num_layers = num_layers
|
532 |
+
|
533 |
+
# GLU
|
534 |
+
self.mlp = GLU(
|
535 |
+
hidden_size,
|
536 |
+
inner_hidden_size=inner_hidden_size,
|
537 |
+
bias=use_bias,
|
538 |
+
layer_id=layer_id,
|
539 |
+
params_dtype=params_dtype,
|
540 |
+
)
|
541 |
+
|
542 |
+
def forward(
|
543 |
+
self,
|
544 |
+
hidden_states: torch.Tensor,
|
545 |
+
position_ids,
|
546 |
+
attention_mask: torch.Tensor,
|
547 |
+
layer_id,
|
548 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
549 |
+
use_cache: bool = False,
|
550 |
+
output_attentions: bool = False,
|
551 |
+
):
|
552 |
+
"""
|
553 |
+
hidden_states: [seq_len, batch, hidden_size]
|
554 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
555 |
+
"""
|
556 |
+
|
557 |
+
# Layer norm at the begining of the transformer layer.
|
558 |
+
# [seq_len, batch, hidden_size]
|
559 |
+
attention_input = self.input_layernorm(hidden_states)
|
560 |
+
|
561 |
+
# Self attention.
|
562 |
+
attention_outputs = self.attention(
|
563 |
+
attention_input,
|
564 |
+
position_ids,
|
565 |
+
attention_mask=attention_mask,
|
566 |
+
layer_id=layer_id,
|
567 |
+
layer_past=layer_past,
|
568 |
+
use_cache=use_cache,
|
569 |
+
output_attentions=output_attentions
|
570 |
+
)
|
571 |
+
|
572 |
+
attention_output = attention_outputs[0]
|
573 |
+
|
574 |
+
outputs = attention_outputs[1:]
|
575 |
+
|
576 |
+
# Residual connection.
|
577 |
+
alpha = (2 * self.num_layers) ** 0.5
|
578 |
+
hidden_states = attention_input * alpha + attention_output
|
579 |
+
|
580 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
581 |
+
|
582 |
+
# MLP.
|
583 |
+
mlp_output = self.mlp(mlp_input)
|
584 |
+
|
585 |
+
# Second residual connection.
|
586 |
+
output = mlp_input * alpha + mlp_output
|
587 |
+
|
588 |
+
if use_cache:
|
589 |
+
outputs = (output,) + outputs
|
590 |
+
else:
|
591 |
+
outputs = (output,) + outputs[1:]
|
592 |
+
|
593 |
+
return outputs # hidden_states, present, attentions
|
594 |
+
|
595 |
+
|
596 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
597 |
+
"""
|
598 |
+
An abstract class to handle weights initialization and
|
599 |
+
a simple interface for downloading and loading pretrained models.
|
600 |
+
"""
|
601 |
+
|
602 |
+
is_parallelizable = True
|
603 |
+
supports_gradient_checkpointing = False
|
604 |
+
config_class = ChatGLMConfig
|
605 |
+
base_model_prefix = "transformer"
|
606 |
+
_no_split_modules = ["GLM6BBlock"]
|
607 |
+
|
608 |
+
def __init__(self, *inputs, **kwargs):
|
609 |
+
super().__init__(*inputs, **kwargs)
|
610 |
+
|
611 |
+
def _init_weights(self, module: nn.Module):
|
612 |
+
"""Initialize the weights."""
|
613 |
+
return
|
614 |
+
|
615 |
+
|
616 |
+
CHATGLM_6B_START_DOCSTRING = r"""
|
617 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
618 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
619 |
+
usage and behavior.
|
620 |
+
|
621 |
+
Parameters:
|
622 |
+
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
623 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
624 |
+
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
625 |
+
"""
|
626 |
+
|
627 |
+
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
628 |
+
Args:
|
629 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
630 |
+
Indices of input sequence tokens in the vocabulary.
|
631 |
+
|
632 |
+
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
633 |
+
See [`PreTrainedTokenizer.encode`] and
|
634 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
635 |
+
|
636 |
+
[What are input IDs?](../glossary#input-ids)
|
637 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
638 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
639 |
+
|
640 |
+
- 1 for tokens that are **not masked**,
|
641 |
+
- 0 for tokens that are **masked**.
|
642 |
+
|
643 |
+
[What are attention masks?](../glossary#attention-mask)
|
644 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
645 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
646 |
+
|
647 |
+
- 0 corresponds to a *sentence A* token,
|
648 |
+
- 1 corresponds to a *sentence B* token.
|
649 |
+
|
650 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
651 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
652 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
653 |
+
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
654 |
+
|
655 |
+
[What are position IDs?](../glossary#position-ids)
|
656 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
657 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
658 |
+
|
659 |
+
- 1 indicates the head is **not masked**,
|
660 |
+
- 0 indicates the head is **masked**.
|
661 |
+
|
662 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
663 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
664 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
665 |
+
than the model's internal embedding lookup matrix.
|
666 |
+
output_attentions (`bool`, *optional*):
|
667 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
668 |
+
tensors for more detail.
|
669 |
+
output_hidden_states (`bool`, *optional*):
|
670 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
671 |
+
more detail.
|
672 |
+
return_dict (`bool`, *optional*):
|
673 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
674 |
+
"""
|
675 |
+
|
676 |
+
|
677 |
+
@add_start_docstrings(
|
678 |
+
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
679 |
+
CHATGLM_6B_START_DOCSTRING,
|
680 |
+
)
|
681 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
682 |
+
"""
|
683 |
+
|
684 |
+
The model can behave as an encoder (with only self-attention) as well
|
685 |
+
as a decoder, in which case a layer of cross-attention is added between
|
686 |
+
the self-attention layers, following the architecture described in [Attention is
|
687 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
688 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
689 |
+
|
690 |
+
To behave as an decoder the model needs to be initialized with the
|
691 |
+
`is_decoder` argument of the configuration set to `True`.
|
692 |
+
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
693 |
+
argument and `add_cross_attention` set to `True`; an
|
694 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
695 |
+
"""
|
696 |
+
|
697 |
+
def __init__(self, config: ChatGLMConfig):
|
698 |
+
super().__init__(config)
|
699 |
+
|
700 |
+
# recording parameters
|
701 |
+
self.max_sequence_length = config.max_sequence_length
|
702 |
+
self.hidden_size = config.hidden_size
|
703 |
+
self.params_dtype = torch.half
|
704 |
+
self.num_attention_heads = config.num_attention_heads
|
705 |
+
self.vocab_size = config.vocab_size
|
706 |
+
self.num_layers = config.num_layers
|
707 |
+
self.layernorm_epsilon = config.layernorm_epsilon
|
708 |
+
self.inner_hidden_size = config.inner_hidden_size
|
709 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
710 |
+
self.position_encoding_2d = config.position_encoding_2d
|
711 |
+
|
712 |
+
self.word_embeddings = skip_init(
|
713 |
+
torch.nn.Embedding,
|
714 |
+
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
715 |
+
dtype=self.params_dtype
|
716 |
+
)
|
717 |
+
|
718 |
+
def get_layer(layer_id):
|
719 |
+
return GLMBlock(
|
720 |
+
self.hidden_size,
|
721 |
+
self.num_attention_heads,
|
722 |
+
self.layernorm_epsilon,
|
723 |
+
layer_id,
|
724 |
+
inner_hidden_size=self.inner_hidden_size,
|
725 |
+
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
726 |
+
layernorm=LayerNorm,
|
727 |
+
use_bias=True,
|
728 |
+
params_dtype=self.params_dtype,
|
729 |
+
position_encoding_2d=self.position_encoding_2d,
|
730 |
+
)
|
731 |
+
|
732 |
+
self.layers = torch.nn.ModuleList(
|
733 |
+
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
734 |
+
)
|
735 |
+
|
736 |
+
# Final layer norm before output.
|
737 |
+
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
738 |
+
|
739 |
+
def get_input_embeddings(self):
|
740 |
+
return self.word_embeddings
|
741 |
+
|
742 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
743 |
+
self.word_embeddings = new_embeddings
|
744 |
+
|
745 |
+
@staticmethod
|
746 |
+
def get_masks(seq, device):
|
747 |
+
context_length = seq.index(150004) + 1
|
748 |
+
|
749 |
+
attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
|
750 |
+
attention_mask.tril_()
|
751 |
+
attention_mask[..., :context_length - 1] = 1
|
752 |
+
attention_mask.unsqueeze_(1)
|
753 |
+
attention_mask = (attention_mask < 0.5).bool()
|
754 |
+
|
755 |
+
return attention_mask
|
756 |
+
|
757 |
+
def get_position_ids(self, seq, mask_position, device, gmask=False):
|
758 |
+
context_length = seq.index(150004) + 1
|
759 |
+
if self.position_encoding_2d:
|
760 |
+
seq_length = seq.index(150004)
|
761 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
762 |
+
if not gmask:
|
763 |
+
position_ids[seq_length:] = mask_position
|
764 |
+
block_position_ids = torch.cat((
|
765 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
766 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
767 |
+
))
|
768 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
769 |
+
else:
|
770 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
771 |
+
if not gmask:
|
772 |
+
position_ids[context_length - 1:] = mask_position
|
773 |
+
|
774 |
+
position_ids = position_ids.unsqueeze(0)
|
775 |
+
|
776 |
+
return position_ids
|
777 |
+
|
778 |
+
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
779 |
+
@add_code_sample_docstrings(
|
780 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
781 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
782 |
+
config_class=_CONFIG_FOR_DOC,
|
783 |
+
)
|
784 |
+
def forward(
|
785 |
+
self,
|
786 |
+
input_ids: Optional[torch.LongTensor] = None,
|
787 |
+
position_ids: Optional[torch.LongTensor] = None,
|
788 |
+
attention_mask: Optional[torch.Tensor] = None,
|
789 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
790 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
791 |
+
use_cache: Optional[bool] = None,
|
792 |
+
output_attentions: Optional[bool] = None,
|
793 |
+
output_hidden_states: Optional[bool] = None,
|
794 |
+
return_dict: Optional[bool] = None,
|
795 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
796 |
+
|
797 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
798 |
+
output_hidden_states = (
|
799 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
800 |
+
)
|
801 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
802 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
803 |
+
|
804 |
+
if input_ids is not None and inputs_embeds is not None:
|
805 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
806 |
+
elif input_ids is not None:
|
807 |
+
batch_size, seq_length = input_ids.shape[:2]
|
808 |
+
elif inputs_embeds is not None:
|
809 |
+
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
810 |
+
else:
|
811 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
812 |
+
|
813 |
+
if past_key_values is None:
|
814 |
+
past_key_values = tuple([None] * len(self.layers))
|
815 |
+
|
816 |
+
MASK, gMASK = 150000, 150001
|
817 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
818 |
+
use_gmask = False if MASK in input_ids else gMASK
|
819 |
+
seq = input_ids[0].tolist()
|
820 |
+
|
821 |
+
mask_position = seq.index(mask_token)
|
822 |
+
|
823 |
+
if attention_mask is None:
|
824 |
+
attention_mask = self.get_masks(
|
825 |
+
seq=seq,
|
826 |
+
device=input_ids.device
|
827 |
+
)
|
828 |
+
|
829 |
+
if position_ids is None:
|
830 |
+
position_ids = self.get_position_ids(
|
831 |
+
seq=seq,
|
832 |
+
mask_position=mask_position,
|
833 |
+
device=input_ids.device,
|
834 |
+
gmask=use_gmask
|
835 |
+
)
|
836 |
+
|
837 |
+
if inputs_embeds is None:
|
838 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
839 |
+
|
840 |
+
# [seq_len, batch, hidden_size]
|
841 |
+
hidden_states = inputs_embeds.transpose(0, 1)
|
842 |
+
|
843 |
+
presents = () if use_cache else None
|
844 |
+
all_self_attentions = () if output_attentions else None
|
845 |
+
all_hidden_states = () if output_hidden_states else None
|
846 |
+
|
847 |
+
seq_length_with_past = seq_length
|
848 |
+
past_key_values_length = 0
|
849 |
+
if past_key_values[0] is not None:
|
850 |
+
past_key_values_length = past_key_values[0][0].shape[0]
|
851 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
852 |
+
if attention_mask is None:
|
853 |
+
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
854 |
+
|
855 |
+
else:
|
856 |
+
attention_mask = attention_mask.to(input_ids.device)
|
857 |
+
|
858 |
+
for i, layer in enumerate(self.layers):
|
859 |
+
|
860 |
+
if output_hidden_states:
|
861 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
862 |
+
|
863 |
+
layer_ret = layer(
|
864 |
+
hidden_states,
|
865 |
+
position_ids=position_ids,
|
866 |
+
attention_mask=attention_mask,
|
867 |
+
layer_id=torch.tensor(i),
|
868 |
+
layer_past=past_key_values[i],
|
869 |
+
use_cache=use_cache,
|
870 |
+
output_attentions=output_attentions
|
871 |
+
)
|
872 |
+
|
873 |
+
hidden_states = layer_ret[0]
|
874 |
+
|
875 |
+
if use_cache:
|
876 |
+
presents = presents + (layer_ret[1],)
|
877 |
+
|
878 |
+
if output_attentions:
|
879 |
+
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
880 |
+
|
881 |
+
# Final layer norm.
|
882 |
+
hidden_states = self.final_layernorm(hidden_states)
|
883 |
+
|
884 |
+
if output_hidden_states:
|
885 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
886 |
+
|
887 |
+
if not return_dict:
|
888 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
889 |
+
|
890 |
+
return BaseModelOutputWithPast(
|
891 |
+
last_hidden_state=hidden_states,
|
892 |
+
past_key_values=presents,
|
893 |
+
hidden_states=all_hidden_states,
|
894 |
+
attentions=all_self_attentions,
|
895 |
+
)
|
896 |
+
|
897 |
+
|
898 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
899 |
+
def __init__(self, config):
|
900 |
+
super().__init__(config)
|
901 |
+
|
902 |
+
# self.hidden_size = config.hidden_size
|
903 |
+
# self.params_dtype = torch.half
|
904 |
+
# self.vocab_size = config.vocab_size
|
905 |
+
self.max_sequence_length = config.max_sequence_length
|
906 |
+
|
907 |
+
self.position_encoding_2d = config.position_encoding_2d
|
908 |
+
|
909 |
+
self.transformer = ChatGLMModel(config)
|
910 |
+
|
911 |
+
self.lm_head = skip_init(
|
912 |
+
nn.Linear,
|
913 |
+
config.hidden_size,
|
914 |
+
config.vocab_size,
|
915 |
+
bias=False,
|
916 |
+
dtype=torch.half
|
917 |
+
)
|
918 |
+
|
919 |
+
def get_output_embeddings(self):
|
920 |
+
return self.lm_head
|
921 |
+
|
922 |
+
def set_output_embeddings(self, new_embeddings):
|
923 |
+
self.lm_head = new_embeddings
|
924 |
+
|
925 |
+
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
|
926 |
+
attention_mask = torch.ones((1, context_length, context_length), device=device)
|
927 |
+
attention_mask.tril_()
|
928 |
+
attention_mask[..., :context_length - 1] = 1
|
929 |
+
attention_mask.unsqueeze_(1)
|
930 |
+
attention_mask = (attention_mask < 0.5).bool()
|
931 |
+
|
932 |
+
if self.position_encoding_2d:
|
933 |
+
seq_length = seq.index(150004)
|
934 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
935 |
+
if not gmask:
|
936 |
+
position_ids[seq_length:] = mask_position
|
937 |
+
block_position_ids = torch.cat((
|
938 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
939 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
940 |
+
))
|
941 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
942 |
+
else:
|
943 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
944 |
+
if not gmask:
|
945 |
+
position_ids[context_length - 1:] = mask_position
|
946 |
+
|
947 |
+
position_ids = position_ids.unsqueeze(0)
|
948 |
+
|
949 |
+
return attention_mask, position_ids
|
950 |
+
|
951 |
+
def prepare_inputs_for_generation(
|
952 |
+
self,
|
953 |
+
input_ids: torch.LongTensor,
|
954 |
+
past: Optional[torch.Tensor] = None,
|
955 |
+
past_key_values: Optional[torch.Tensor] = None,
|
956 |
+
attention_mask: Optional[torch.Tensor] = None,
|
957 |
+
**kwargs
|
958 |
+
) -> dict:
|
959 |
+
|
960 |
+
MASK, gMASK = 150000, 150001
|
961 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
962 |
+
use_gmask = False if MASK in input_ids else gMASK
|
963 |
+
seq = input_ids[0].tolist()
|
964 |
+
mask_position = seq.index(mask_token)
|
965 |
+
|
966 |
+
if mask_token not in seq:
|
967 |
+
raise ValueError("You have to add either [MASK] or [gMASK] in your input")
|
968 |
+
|
969 |
+
# only last token for input_ids if past is not None
|
970 |
+
if past is not None or past_key_values is not None:
|
971 |
+
context_length = seq.index(150004)
|
972 |
+
last_token = input_ids[:, -1].unsqueeze(-1)
|
973 |
+
if self.position_encoding_2d:
|
974 |
+
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
|
975 |
+
device=input_ids.device)
|
976 |
+
else:
|
977 |
+
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)
|
978 |
+
|
979 |
+
if past is None:
|
980 |
+
past = past_key_values
|
981 |
+
return {
|
982 |
+
"input_ids": last_token,
|
983 |
+
"past_key_values": past,
|
984 |
+
"position_ids": position_ids,
|
985 |
+
}
|
986 |
+
else:
|
987 |
+
attention_mask, position_ids = self.get_masks_and_position_ids(
|
988 |
+
seq=seq,
|
989 |
+
mask_position=mask_position,
|
990 |
+
context_length=len(seq),
|
991 |
+
device=input_ids.device,
|
992 |
+
gmask=use_gmask
|
993 |
+
)
|
994 |
+
|
995 |
+
return {
|
996 |
+
"input_ids": input_ids,
|
997 |
+
"past_key_values": past,
|
998 |
+
"position_ids": position_ids,
|
999 |
+
"attention_mask": attention_mask
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
def forward(
|
1003 |
+
self,
|
1004 |
+
input_ids: Optional[torch.Tensor] = None,
|
1005 |
+
position_ids: Optional[torch.Tensor] = None,
|
1006 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1007 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1008 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1009 |
+
labels: Optional[torch.Tensor] = None,
|
1010 |
+
use_cache: Optional[bool] = None,
|
1011 |
+
output_attentions: Optional[bool] = None,
|
1012 |
+
output_hidden_states: Optional[bool] = None,
|
1013 |
+
return_dict: Optional[bool] = None,
|
1014 |
+
):
|
1015 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1016 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1017 |
+
|
1018 |
+
transformer_outputs = self.transformer(
|
1019 |
+
input_ids=input_ids,
|
1020 |
+
position_ids=position_ids,
|
1021 |
+
attention_mask=attention_mask,
|
1022 |
+
past_key_values=past_key_values,
|
1023 |
+
inputs_embeds=inputs_embeds,
|
1024 |
+
use_cache=use_cache,
|
1025 |
+
output_attentions=output_attentions,
|
1026 |
+
output_hidden_states=output_hidden_states,
|
1027 |
+
return_dict=return_dict,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
hidden_states = transformer_outputs[0]
|
1031 |
+
|
1032 |
+
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
1033 |
+
|
1034 |
+
loss = None
|
1035 |
+
if labels is not None:
|
1036 |
+
lm_logits = lm_logits.to(torch.float32)
|
1037 |
+
|
1038 |
+
# Shift so that tokens < n predict n
|
1039 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1040 |
+
shift_labels = labels[..., 1:].contiguous()
|
1041 |
+
# Flatten the tokens
|
1042 |
+
loss_fct = CrossEntropyLoss()
|
1043 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1044 |
+
|
1045 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1046 |
+
loss = loss.to(hidden_states.dtype)
|
1047 |
+
|
1048 |
+
if not return_dict:
|
1049 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1050 |
+
return ((loss,) + output) if loss is not None else output
|
1051 |
+
|
1052 |
+
return CausalLMOutputWithPast(
|
1053 |
+
loss=loss,
|
1054 |
+
logits=lm_logits,
|
1055 |
+
past_key_values=transformer_outputs.past_key_values,
|
1056 |
+
hidden_states=transformer_outputs.hidden_states,
|
1057 |
+
attentions=transformer_outputs.attentions,
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
@staticmethod
|
1061 |
+
def _reorder_cache(
|
1062 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1063 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1064 |
+
"""
|
1065 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1066 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1067 |
+
beam_idx at every generation step.
|
1068 |
+
|
1069 |
+
Output shares the same memory storage as `past`.
|
1070 |
+
"""
|
1071 |
+
return tuple(
|
1072 |
+
(
|
1073 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
1074 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1075 |
+
)
|
1076 |
+
for layer_past in past
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
@torch.no_grad()
|
1080 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
1081 |
+
do_sample=True, top_p=0.7, temperature=0.95, **kwargs):
|
1082 |
+
if history is None:
|
1083 |
+
history = []
|
1084 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1085 |
+
"temperature": temperature, **kwargs}
|
1086 |
+
if not history:
|
1087 |
+
prompt = query
|
1088 |
+
else:
|
1089 |
+
prompt = ""
|
1090 |
+
for i, (old_query, response) in enumerate(history):
|
1091 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1092 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1093 |
+
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
1094 |
+
input_ids = input_ids.to(self.device)
|
1095 |
+
outputs = self.generate(**input_ids, **gen_kwargs)
|
1096 |
+
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]) - 2:]
|
1097 |
+
response = tokenizer.decode(outputs)
|
1098 |
+
response = response.strip()
|
1099 |
+
response = response.replace("[[训练时间]]", "2023年")
|
1100 |
+
history = history + [(query, response)]
|
1101 |
+
return response, history
|
1102 |
+
|
1103 |
+
@torch.no_grad()
|
1104 |
+
def generate(
|
1105 |
+
self,
|
1106 |
+
**kwargs,
|
1107 |
+
):
|
1108 |
+
MASK, gMASK = 150000, 150001
|
1109 |
+
bos, eos = 150004, 150005
|
1110 |
+
|
1111 |
+
if "eos_token_id" not in kwargs:
|
1112 |
+
kwargs["eos_token_id"] = eos
|
1113 |
+
|
1114 |
+
stop = False
|
1115 |
+
|
1116 |
+
return_seqs = []
|
1117 |
+
|
1118 |
+
while True:
|
1119 |
+
output_ids = super().generate(**kwargs)
|
1120 |
+
|
1121 |
+
return_seqs = []
|
1122 |
+
max_length = 0
|
1123 |
+
|
1124 |
+
for i in range(output_ids.shape[0]):
|
1125 |
+
output_seq = output_ids[i].tolist()
|
1126 |
+
mask_token = MASK if MASK in output_seq else gMASK
|
1127 |
+
mask_position = output_seq.index(mask_token)
|
1128 |
+
bos_position = output_seq.index(bos)
|
1129 |
+
if eos in output_seq:
|
1130 |
+
eos_position = output_seq.index(eos)
|
1131 |
+
else:
|
1132 |
+
eos_position = len(output_seq)
|
1133 |
+
|
1134 |
+
return_seq = output_seq[:mask_position] + output_seq[bos_position + 1:eos_position] + output_seq[
|
1135 |
+
mask_position + 1:bos_position]
|
1136 |
+
max_length = max(max_length, len(return_seq))
|
1137 |
+
return_seqs.append(return_seq)
|
1138 |
+
|
1139 |
+
for i in range(output_ids.shape[0]):
|
1140 |
+
return_seqs[i] = [0] * (max_length - len(return_seqs[i])) + return_seqs[i] # padding
|
1141 |
+
if mask_token not in return_seqs[i]:
|
1142 |
+
stop = True
|
1143 |
+
|
1144 |
+
if stop:
|
1145 |
+
break
|
1146 |
+
|
1147 |
+
for return_seq in return_seqs:
|
1148 |
+
return_seq += [bos]
|
1149 |
+
|
1150 |
+
kwargs['input_ids'] = torch.tensor(return_seqs, dtype=torch.long, device=kwargs['input_ids'].device)
|
1151 |
+
|
1152 |
+
return torch.tensor(return_seqs, dtype=torch.long, device=kwargs['input_ids'].device)
|
1153 |
+
|
1154 |
+
def quantize(self, bits: int):
|
1155 |
+
from .quantization import quantize
|
1156 |
+
self.transformer = quantize(self.transformer, bits)
|
1157 |
+
return self
|
moe/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13744473856
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00008-of-00008.bin",
|
7 |
+
"transformer.final_layernorm.bias": "pytorch_model-00007-of-00008.bin",
|
8 |
+
"transformer.final_layernorm.weight": "pytorch_model-00007-of-00008.bin",
|
9 |
+
"transformer.layers.0.attention.dense.bias": "pytorch_model-00001-of-00008.bin",
|
10 |
+
"transformer.layers.0.attention.dense.weight": "pytorch_model-00001-of-00008.bin",
|
11 |
+
"transformer.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00008.bin",
|
12 |
+
"transformer.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00008.bin",
|
13 |
+
"transformer.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00008.bin",
|
14 |
+
"transformer.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00008.bin",
|
15 |
+
"transformer.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00008.bin",
|
16 |
+
"transformer.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00008.bin",
|
17 |
+
"transformer.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00008.bin",
|
18 |
+
"transformer.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00008.bin",
|
19 |
+
"transformer.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00008.bin",
|
20 |
+
"transformer.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00008.bin",
|
21 |
+
"transformer.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00008.bin",
|
22 |
+
"transformer.layers.1.attention.dense.bias": "pytorch_model-00001-of-00008.bin",
|
23 |
+
"transformer.layers.1.attention.dense.weight": "pytorch_model-00001-of-00008.bin",
|
24 |
+
"transformer.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00008.bin",
|
25 |
+
"transformer.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00008.bin",
|
26 |
+
"transformer.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00008.bin",
|
27 |
+
"transformer.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00008.bin",
|
28 |
+
"transformer.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00008.bin",
|
29 |
+
"transformer.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00008.bin",
|
30 |
+
"transformer.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00008.bin",
|
31 |
+
"transformer.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00008.bin",
|
32 |
+
"transformer.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00008.bin",
|
33 |
+
"transformer.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00008.bin",
|
34 |
+
"transformer.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00008.bin",
|
35 |
+
"transformer.layers.10.attention.dense.bias": "pytorch_model-00003-of-00008.bin",
|
36 |
+
"transformer.layers.10.attention.dense.weight": "pytorch_model-00003-of-00008.bin",
|
37 |
+
"transformer.layers.10.attention.query_key_value.bias": "pytorch_model-00003-of-00008.bin",
|
38 |
+
"transformer.layers.10.attention.query_key_value.weight": "pytorch_model-00003-of-00008.bin",
|
39 |
+
"transformer.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
|
40 |
+
"transformer.layers.10.input_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
41 |
+
"transformer.layers.10.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
42 |
+
"transformer.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00008.bin",
|
43 |
+
"transformer.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00008.bin",
|
44 |
+
"transformer.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00008.bin",
|
45 |
+
"transformer.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00008.bin",
|
46 |
+
"transformer.layers.10.post_attention_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
47 |
+
"transformer.layers.10.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
48 |
+
"transformer.layers.11.attention.dense.bias": "pytorch_model-00004-of-00008.bin",
|
49 |
+
"transformer.layers.11.attention.dense.weight": "pytorch_model-00004-of-00008.bin",
|
50 |
+
"transformer.layers.11.attention.query_key_value.bias": "pytorch_model-00003-of-00008.bin",
|
51 |
+
"transformer.layers.11.attention.query_key_value.weight": "pytorch_model-00003-of-00008.bin",
|
52 |
+
"transformer.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
|
53 |
+
"transformer.layers.11.input_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
54 |
+
"transformer.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
55 |
+
"transformer.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00008.bin",
|
56 |
+
"transformer.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00008.bin",
|
57 |
+
"transformer.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00008.bin",
|
58 |
+
"transformer.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00008.bin",
|
59 |
+
"transformer.layers.11.post_attention_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
60 |
+
"transformer.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
61 |
+
"transformer.layers.12.attention.dense.bias": "pytorch_model-00004-of-00008.bin",
|
62 |
+
"transformer.layers.12.attention.dense.weight": "pytorch_model-00004-of-00008.bin",
|
63 |
+
"transformer.layers.12.attention.query_key_value.bias": "pytorch_model-00004-of-00008.bin",
|
64 |
+
"transformer.layers.12.attention.query_key_value.weight": "pytorch_model-00004-of-00008.bin",
|
65 |
+
"transformer.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
|
66 |
+
"transformer.layers.12.input_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
67 |
+
"transformer.layers.12.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
68 |
+
"transformer.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00008.bin",
|
69 |
+
"transformer.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00008.bin",
|
70 |
+
"transformer.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00008.bin",
|
71 |
+
"transformer.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00008.bin",
|
72 |
+
"transformer.layers.12.post_attention_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
73 |
+
"transformer.layers.12.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
74 |
+
"transformer.layers.13.attention.dense.bias": "pytorch_model-00004-of-00008.bin",
|
75 |
+
"transformer.layers.13.attention.dense.weight": "pytorch_model-00004-of-00008.bin",
|
76 |
+
"transformer.layers.13.attention.query_key_value.bias": "pytorch_model-00004-of-00008.bin",
|
77 |
+
"transformer.layers.13.attention.query_key_value.weight": "pytorch_model-00004-of-00008.bin",
|
78 |
+
"transformer.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
|
79 |
+
"transformer.layers.13.input_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
80 |
+
"transformer.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
81 |
+
"transformer.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00008.bin",
|
82 |
+
"transformer.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00008.bin",
|
83 |
+
"transformer.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00008.bin",
|
84 |
+
"transformer.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00008.bin",
|
85 |
+
"transformer.layers.13.post_attention_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
86 |
+
"transformer.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
87 |
+
"transformer.layers.14.attention.dense.bias": "pytorch_model-00004-of-00008.bin",
|
88 |
+
"transformer.layers.14.attention.dense.weight": "pytorch_model-00004-of-00008.bin",
|
89 |
+
"transformer.layers.14.attention.query_key_value.bias": "pytorch_model-00004-of-00008.bin",
|
90 |
+
"transformer.layers.14.attention.query_key_value.weight": "pytorch_model-00004-of-00008.bin",
|
91 |
+
"transformer.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
|
92 |
+
"transformer.layers.14.input_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
93 |
+
"transformer.layers.14.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
94 |
+
"transformer.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00008.bin",
|
95 |
+
"transformer.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00008.bin",
|
96 |
+
"transformer.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00008.bin",
|
97 |
+
"transformer.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00008.bin",
|
98 |
+
"transformer.layers.14.post_attention_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
99 |
+
"transformer.layers.14.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
100 |
+
"transformer.layers.15.attention.dense.bias": "pytorch_model-00004-of-00008.bin",
|
101 |
+
"transformer.layers.15.attention.dense.weight": "pytorch_model-00004-of-00008.bin",
|
102 |
+
"transformer.layers.15.attention.query_key_value.bias": "pytorch_model-00004-of-00008.bin",
|
103 |
+
"transformer.layers.15.attention.query_key_value.weight": "pytorch_model-00004-of-00008.bin",
|
104 |
+
"transformer.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
|
105 |
+
"transformer.layers.15.input_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
106 |
+
"transformer.layers.15.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
107 |
+
"transformer.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00008.bin",
|
108 |
+
"transformer.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00008.bin",
|
109 |
+
"transformer.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00008.bin",
|
110 |
+
"transformer.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00008.bin",
|
111 |
+
"transformer.layers.15.post_attention_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
112 |
+
"transformer.layers.15.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
113 |
+
"transformer.layers.16.attention.dense.bias": "pytorch_model-00005-of-00008.bin",
|
114 |
+
"transformer.layers.16.attention.dense.weight": "pytorch_model-00005-of-00008.bin",
|
115 |
+
"transformer.layers.16.attention.query_key_value.bias": "pytorch_model-00005-of-00008.bin",
|
116 |
+
"transformer.layers.16.attention.query_key_value.weight": "pytorch_model-00005-of-00008.bin",
|
117 |
+
"transformer.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
|
118 |
+
"transformer.layers.16.input_layernorm.bias": "pytorch_model-00004-of-00008.bin",
|
119 |
+
"transformer.layers.16.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
|
120 |
+
"transformer.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00008.bin",
|
121 |
+
"transformer.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00008.bin",
|
122 |
+
"transformer.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00008.bin",
|
123 |
+
"transformer.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00008.bin",
|
124 |
+
"transformer.layers.16.post_attention_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
125 |
+
"transformer.layers.16.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
126 |
+
"transformer.layers.17.attention.dense.bias": "pytorch_model-00005-of-00008.bin",
|
127 |
+
"transformer.layers.17.attention.dense.weight": "pytorch_model-00005-of-00008.bin",
|
128 |
+
"transformer.layers.17.attention.query_key_value.bias": "pytorch_model-00005-of-00008.bin",
|
129 |
+
"transformer.layers.17.attention.query_key_value.weight": "pytorch_model-00005-of-00008.bin",
|
130 |
+
"transformer.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
|
131 |
+
"transformer.layers.17.input_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
132 |
+
"transformer.layers.17.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
133 |
+
"transformer.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00008.bin",
|
134 |
+
"transformer.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00008.bin",
|
135 |
+
"transformer.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00008.bin",
|
136 |
+
"transformer.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00008.bin",
|
137 |
+
"transformer.layers.17.post_attention_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
138 |
+
"transformer.layers.17.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
139 |
+
"transformer.layers.18.attention.dense.bias": "pytorch_model-00005-of-00008.bin",
|
140 |
+
"transformer.layers.18.attention.dense.weight": "pytorch_model-00005-of-00008.bin",
|
141 |
+
"transformer.layers.18.attention.query_key_value.bias": "pytorch_model-00005-of-00008.bin",
|
142 |
+
"transformer.layers.18.attention.query_key_value.weight": "pytorch_model-00005-of-00008.bin",
|
143 |
+
"transformer.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
|
144 |
+
"transformer.layers.18.input_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
145 |
+
"transformer.layers.18.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
146 |
+
"transformer.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00008.bin",
|
147 |
+
"transformer.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00008.bin",
|
148 |
+
"transformer.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00008.bin",
|
149 |
+
"transformer.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00008.bin",
|
150 |
+
"transformer.layers.18.post_attention_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
151 |
+
"transformer.layers.18.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
152 |
+
"transformer.layers.19.attention.dense.bias": "pytorch_model-00005-of-00008.bin",
|
153 |
+
"transformer.layers.19.attention.dense.weight": "pytorch_model-00005-of-00008.bin",
|
154 |
+
"transformer.layers.19.attention.query_key_value.bias": "pytorch_model-00005-of-00008.bin",
|
155 |
+
"transformer.layers.19.attention.query_key_value.weight": "pytorch_model-00005-of-00008.bin",
|
156 |
+
"transformer.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
|
157 |
+
"transformer.layers.19.input_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
158 |
+
"transformer.layers.19.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
159 |
+
"transformer.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00008.bin",
|
160 |
+
"transformer.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00008.bin",
|
161 |
+
"transformer.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00008.bin",
|
162 |
+
"transformer.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00008.bin",
|
163 |
+
"transformer.layers.19.post_attention_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
164 |
+
"transformer.layers.19.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
165 |
+
"transformer.layers.2.attention.dense.bias": "pytorch_model-00002-of-00008.bin",
|
166 |
+
"transformer.layers.2.attention.dense.weight": "pytorch_model-00002-of-00008.bin",
|
167 |
+
"transformer.layers.2.attention.query_key_value.bias": "pytorch_model-00002-of-00008.bin",
|
168 |
+
"transformer.layers.2.attention.query_key_value.weight": "pytorch_model-00002-of-00008.bin",
|
169 |
+
"transformer.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
|
170 |
+
"transformer.layers.2.input_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
171 |
+
"transformer.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
172 |
+
"transformer.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00008.bin",
|
173 |
+
"transformer.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00008.bin",
|
174 |
+
"transformer.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00008.bin",
|
175 |
+
"transformer.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00008.bin",
|
176 |
+
"transformer.layers.2.post_attention_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
177 |
+
"transformer.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
178 |
+
"transformer.layers.20.attention.dense.bias": "pytorch_model-00005-of-00008.bin",
|
179 |
+
"transformer.layers.20.attention.dense.weight": "pytorch_model-00005-of-00008.bin",
|
180 |
+
"transformer.layers.20.attention.query_key_value.bias": "pytorch_model-00005-of-00008.bin",
|
181 |
+
"transformer.layers.20.attention.query_key_value.weight": "pytorch_model-00005-of-00008.bin",
|
182 |
+
"transformer.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
|
183 |
+
"transformer.layers.20.input_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
184 |
+
"transformer.layers.20.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
185 |
+
"transformer.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00008.bin",
|
186 |
+
"transformer.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00008.bin",
|
187 |
+
"transformer.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00008.bin",
|
188 |
+
"transformer.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00008.bin",
|
189 |
+
"transformer.layers.20.post_attention_layernorm.bias": "pytorch_model-00005-of-00008.bin",
|
190 |
+
"transformer.layers.20.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
|
191 |
+
"transformer.layers.21.attention.dense.bias": "pytorch_model-00006-of-00008.bin",
|
192 |
+
"transformer.layers.21.attention.dense.weight": "pytorch_model-00006-of-00008.bin",
|
193 |
+
"transformer.layers.21.attention.query_key_value.bias": "pytorch_model-00006-of-00008.bin",
|
194 |
+
"transformer.layers.21.attention.query_key_value.weight": "pytorch_model-00006-of-00008.bin",
|
195 |
+
"transformer.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
|
196 |
+
"transformer.layers.21.input_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
197 |
+
"transformer.layers.21.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
198 |
+
"transformer.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00008.bin",
|
199 |
+
"transformer.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00008.bin",
|
200 |
+
"transformer.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00008.bin",
|
201 |
+
"transformer.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00008.bin",
|
202 |
+
"transformer.layers.21.post_attention_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
203 |
+
"transformer.layers.21.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
204 |
+
"transformer.layers.22.attention.dense.bias": "pytorch_model-00006-of-00008.bin",
|
205 |
+
"transformer.layers.22.attention.dense.weight": "pytorch_model-00006-of-00008.bin",
|
206 |
+
"transformer.layers.22.attention.query_key_value.bias": "pytorch_model-00006-of-00008.bin",
|
207 |
+
"transformer.layers.22.attention.query_key_value.weight": "pytorch_model-00006-of-00008.bin",
|
208 |
+
"transformer.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
|
209 |
+
"transformer.layers.22.input_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
210 |
+
"transformer.layers.22.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
211 |
+
"transformer.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00008.bin",
|
212 |
+
"transformer.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00008.bin",
|
213 |
+
"transformer.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00008.bin",
|
214 |
+
"transformer.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00008.bin",
|
215 |
+
"transformer.layers.22.post_attention_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
216 |
+
"transformer.layers.22.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
217 |
+
"transformer.layers.23.attention.dense.bias": "pytorch_model-00006-of-00008.bin",
|
218 |
+
"transformer.layers.23.attention.dense.weight": "pytorch_model-00006-of-00008.bin",
|
219 |
+
"transformer.layers.23.attention.query_key_value.bias": "pytorch_model-00006-of-00008.bin",
|
220 |
+
"transformer.layers.23.attention.query_key_value.weight": "pytorch_model-00006-of-00008.bin",
|
221 |
+
"transformer.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
|
222 |
+
"transformer.layers.23.input_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
223 |
+
"transformer.layers.23.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
224 |
+
"transformer.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00008.bin",
|
225 |
+
"transformer.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00008.bin",
|
226 |
+
"transformer.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00008.bin",
|
227 |
+
"transformer.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00008.bin",
|
228 |
+
"transformer.layers.23.post_attention_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
229 |
+
"transformer.layers.23.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
230 |
+
"transformer.layers.24.attention.dense.bias": "pytorch_model-00006-of-00008.bin",
|
231 |
+
"transformer.layers.24.attention.dense.weight": "pytorch_model-00006-of-00008.bin",
|
232 |
+
"transformer.layers.24.attention.query_key_value.bias": "pytorch_model-00006-of-00008.bin",
|
233 |
+
"transformer.layers.24.attention.query_key_value.weight": "pytorch_model-00006-of-00008.bin",
|
234 |
+
"transformer.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
|
235 |
+
"transformer.layers.24.input_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
236 |
+
"transformer.layers.24.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
237 |
+
"transformer.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00008.bin",
|
238 |
+
"transformer.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00008.bin",
|
239 |
+
"transformer.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00008.bin",
|
240 |
+
"transformer.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00008.bin",
|
241 |
+
"transformer.layers.24.post_attention_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
242 |
+
"transformer.layers.24.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
243 |
+
"transformer.layers.25.attention.dense.bias": "pytorch_model-00006-of-00008.bin",
|
244 |
+
"transformer.layers.25.attention.dense.weight": "pytorch_model-00006-of-00008.bin",
|
245 |
+
"transformer.layers.25.attention.query_key_value.bias": "pytorch_model-00006-of-00008.bin",
|
246 |
+
"transformer.layers.25.attention.query_key_value.weight": "pytorch_model-00006-of-00008.bin",
|
247 |
+
"transformer.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
|
248 |
+
"transformer.layers.25.input_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
249 |
+
"transformer.layers.25.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
250 |
+
"transformer.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00008.bin",
|
251 |
+
"transformer.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00008.bin",
|
252 |
+
"transformer.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00008.bin",
|
253 |
+
"transformer.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00008.bin",
|
254 |
+
"transformer.layers.25.post_attention_layernorm.bias": "pytorch_model-00006-of-00008.bin",
|
255 |
+
"transformer.layers.25.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
|
256 |
+
"transformer.layers.26.attention.dense.bias": "pytorch_model-00007-of-00008.bin",
|
257 |
+
"transformer.layers.26.attention.dense.weight": "pytorch_model-00007-of-00008.bin",
|
258 |
+
"transformer.layers.26.attention.query_key_value.bias": "pytorch_model-00007-of-00008.bin",
|
259 |
+
"transformer.layers.26.attention.query_key_value.weight": "pytorch_model-00007-of-00008.bin",
|
260 |
+
"transformer.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
|
261 |
+
"transformer.layers.26.input_layernorm.bias": "pytorch_model-00007-of-00008.bin",
|
262 |
+
"transformer.layers.26.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
|
263 |
+
"transformer.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00008.bin",
|
264 |
+
"transformer.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00008.bin",
|
265 |
+
"transformer.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00008.bin",
|
266 |
+
"transformer.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00008.bin",
|
267 |
+
"transformer.layers.26.post_attention_layernorm.bias": "pytorch_model-00007-of-00008.bin",
|
268 |
+
"transformer.layers.26.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
|
269 |
+
"transformer.layers.27.attention.dense.bias": "pytorch_model-00007-of-00008.bin",
|
270 |
+
"transformer.layers.27.attention.dense.weight": "pytorch_model-00007-of-00008.bin",
|
271 |
+
"transformer.layers.27.attention.query_key_value.bias": "pytorch_model-00007-of-00008.bin",
|
272 |
+
"transformer.layers.27.attention.query_key_value.weight": "pytorch_model-00007-of-00008.bin",
|
273 |
+
"transformer.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
|
274 |
+
"transformer.layers.27.input_layernorm.bias": "pytorch_model-00007-of-00008.bin",
|
275 |
+
"transformer.layers.27.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
|
276 |
+
"transformer.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00008.bin",
|
277 |
+
"transformer.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00008.bin",
|
278 |
+
"transformer.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00008.bin",
|
279 |
+
"transformer.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00008.bin",
|
280 |
+
"transformer.layers.27.post_attention_layernorm.bias": "pytorch_model-00007-of-00008.bin",
|
281 |
+
"transformer.layers.27.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
|
282 |
+
"transformer.layers.3.attention.dense.bias": "pytorch_model-00002-of-00008.bin",
|
283 |
+
"transformer.layers.3.attention.dense.weight": "pytorch_model-00002-of-00008.bin",
|
284 |
+
"transformer.layers.3.attention.query_key_value.bias": "pytorch_model-00002-of-00008.bin",
|
285 |
+
"transformer.layers.3.attention.query_key_value.weight": "pytorch_model-00002-of-00008.bin",
|
286 |
+
"transformer.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
|
287 |
+
"transformer.layers.3.input_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
288 |
+
"transformer.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
289 |
+
"transformer.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00008.bin",
|
290 |
+
"transformer.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00008.bin",
|
291 |
+
"transformer.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00008.bin",
|
292 |
+
"transformer.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00008.bin",
|
293 |
+
"transformer.layers.3.post_attention_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
294 |
+
"transformer.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
295 |
+
"transformer.layers.4.attention.dense.bias": "pytorch_model-00002-of-00008.bin",
|
296 |
+
"transformer.layers.4.attention.dense.weight": "pytorch_model-00002-of-00008.bin",
|
297 |
+
"transformer.layers.4.attention.query_key_value.bias": "pytorch_model-00002-of-00008.bin",
|
298 |
+
"transformer.layers.4.attention.query_key_value.weight": "pytorch_model-00002-of-00008.bin",
|
299 |
+
"transformer.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
|
300 |
+
"transformer.layers.4.input_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
301 |
+
"transformer.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
302 |
+
"transformer.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00008.bin",
|
303 |
+
"transformer.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00008.bin",
|
304 |
+
"transformer.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00008.bin",
|
305 |
+
"transformer.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00008.bin",
|
306 |
+
"transformer.layers.4.post_attention_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
307 |
+
"transformer.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
308 |
+
"transformer.layers.5.attention.dense.bias": "pytorch_model-00002-of-00008.bin",
|
309 |
+
"transformer.layers.5.attention.dense.weight": "pytorch_model-00002-of-00008.bin",
|
310 |
+
"transformer.layers.5.attention.query_key_value.bias": "pytorch_model-00002-of-00008.bin",
|
311 |
+
"transformer.layers.5.attention.query_key_value.weight": "pytorch_model-00002-of-00008.bin",
|
312 |
+
"transformer.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
|
313 |
+
"transformer.layers.5.input_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
314 |
+
"transformer.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
315 |
+
"transformer.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00008.bin",
|
316 |
+
"transformer.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00008.bin",
|
317 |
+
"transformer.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00008.bin",
|
318 |
+
"transformer.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00008.bin",
|
319 |
+
"transformer.layers.5.post_attention_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
320 |
+
"transformer.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
321 |
+
"transformer.layers.6.attention.dense.bias": "pytorch_model-00002-of-00008.bin",
|
322 |
+
"transformer.layers.6.attention.dense.weight": "pytorch_model-00002-of-00008.bin",
|
323 |
+
"transformer.layers.6.attention.query_key_value.bias": "pytorch_model-00002-of-00008.bin",
|
324 |
+
"transformer.layers.6.attention.query_key_value.weight": "pytorch_model-00002-of-00008.bin",
|
325 |
+
"transformer.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
|
326 |
+
"transformer.layers.6.input_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
327 |
+
"transformer.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
328 |
+
"transformer.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00008.bin",
|
329 |
+
"transformer.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00008.bin",
|
330 |
+
"transformer.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00008.bin",
|
331 |
+
"transformer.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00008.bin",
|
332 |
+
"transformer.layers.6.post_attention_layernorm.bias": "pytorch_model-00002-of-00008.bin",
|
333 |
+
"transformer.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
|
334 |
+
"transformer.layers.7.attention.dense.bias": "pytorch_model-00003-of-00008.bin",
|
335 |
+
"transformer.layers.7.attention.dense.weight": "pytorch_model-00003-of-00008.bin",
|
336 |
+
"transformer.layers.7.attention.query_key_value.bias": "pytorch_model-00003-of-00008.bin",
|
337 |
+
"transformer.layers.7.attention.query_key_value.weight": "pytorch_model-00003-of-00008.bin",
|
338 |
+
"transformer.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
|
339 |
+
"transformer.layers.7.input_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
340 |
+
"transformer.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
341 |
+
"transformer.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00008.bin",
|
342 |
+
"transformer.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00008.bin",
|
343 |
+
"transformer.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00008.bin",
|
344 |
+
"transformer.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00008.bin",
|
345 |
+
"transformer.layers.7.post_attention_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
346 |
+
"transformer.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
347 |
+
"transformer.layers.8.attention.dense.bias": "pytorch_model-00003-of-00008.bin",
|
348 |
+
"transformer.layers.8.attention.dense.weight": "pytorch_model-00003-of-00008.bin",
|
349 |
+
"transformer.layers.8.attention.query_key_value.bias": "pytorch_model-00003-of-00008.bin",
|
350 |
+
"transformer.layers.8.attention.query_key_value.weight": "pytorch_model-00003-of-00008.bin",
|
351 |
+
"transformer.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
|
352 |
+
"transformer.layers.8.input_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
353 |
+
"transformer.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
354 |
+
"transformer.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00008.bin",
|
355 |
+
"transformer.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00008.bin",
|
356 |
+
"transformer.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00008.bin",
|
357 |
+
"transformer.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00008.bin",
|
358 |
+
"transformer.layers.8.post_attention_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
359 |
+
"transformer.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
360 |
+
"transformer.layers.9.attention.dense.bias": "pytorch_model-00003-of-00008.bin",
|
361 |
+
"transformer.layers.9.attention.dense.weight": "pytorch_model-00003-of-00008.bin",
|
362 |
+
"transformer.layers.9.attention.query_key_value.bias": "pytorch_model-00003-of-00008.bin",
|
363 |
+
"transformer.layers.9.attention.query_key_value.weight": "pytorch_model-00003-of-00008.bin",
|
364 |
+
"transformer.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
|
365 |
+
"transformer.layers.9.input_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
366 |
+
"transformer.layers.9.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
367 |
+
"transformer.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00008.bin",
|
368 |
+
"transformer.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00008.bin",
|
369 |
+
"transformer.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00008.bin",
|
370 |
+
"transformer.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00008.bin",
|
371 |
+
"transformer.layers.9.post_attention_layernorm.bias": "pytorch_model-00003-of-00008.bin",
|
372 |
+
"transformer.layers.9.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
|
373 |
+
"transformer.word_embeddings.weight": "pytorch_model-00001-of-00008.bin"
|
374 |
+
}
|
375 |
+
}
|
moe/quantization.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear
|
2 |
+
from torch.nn.parameter import Parameter
|
3 |
+
|
4 |
+
import bz2
|
5 |
+
import torch
|
6 |
+
import base64
|
7 |
+
import ctypes
|
8 |
+
|
9 |
+
from typing import List
|
10 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
11 |
+
|
12 |
+
|
13 |
+
class W8A16Linear(torch.autograd.Function):
|
14 |
+
@staticmethod
|
15 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
16 |
+
ctx.inp_shape = inp.size()
|
17 |
+
ctx.weight_shape = quant_w.size()
|
18 |
+
ctx.weight_bit_width = weight_bit_width
|
19 |
+
out_features = quant_w.size(0)
|
20 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
21 |
+
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
22 |
+
output = inp.mm(weight.t())
|
23 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
24 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
25 |
+
|
26 |
+
@staticmethod
|
27 |
+
def backward(ctx, grad_output: torch.Tensor):
|
28 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
29 |
+
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
|
30 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
31 |
+
grad_input = grad_output.mm(weight)
|
32 |
+
grad_weight = grad_output.t().mm(inp)
|
33 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
|
34 |
+
|
35 |
+
|
36 |
+
class Kernel:
|
37 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
38 |
+
self.code = code
|
39 |
+
self._function_names = function_names
|
40 |
+
self._cmodule = LazyKernelCModule(self.code)
|
41 |
+
|
42 |
+
for name in self._function_names:
|
43 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
44 |
+
|
45 |
+
|
46 |
+
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
47 |
+
|
48 |
+
kernels = Kernel(
|
49 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
50 |
+
[
|
51 |
+
"int4WeightCompression",
|
52 |
+
"int4WeightExtractionFloat",
|
53 |
+
"int4WeightExtractionHalf",
|
54 |
+
"int8WeightExtractionFloat",
|
55 |
+
"int8WeightExtractionHalf",
|
56 |
+
],
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def compress_int4_weight(weight: torch.Tensor): # (n, m)
|
61 |
+
with torch.cuda.device(weight.device):
|
62 |
+
n, m = weight.size(0), weight.size(1)
|
63 |
+
assert m % 2 == 0
|
64 |
+
m = m // 2
|
65 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
|
66 |
+
stream = torch.cuda.current_stream()
|
67 |
+
|
68 |
+
gridDim = (n, 1, 1)
|
69 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
70 |
+
|
71 |
+
kernels.int4WeightCompression(
|
72 |
+
gridDim,
|
73 |
+
blockDim,
|
74 |
+
0,
|
75 |
+
stream,
|
76 |
+
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
|
77 |
+
)
|
78 |
+
return out
|
79 |
+
|
80 |
+
|
81 |
+
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
|
82 |
+
if source_bit_width == 8:
|
83 |
+
func = kernels.int8WeightExtractionHalf
|
84 |
+
elif source_bit_width == 4:
|
85 |
+
func = kernels.int4WeightExtractionHalf
|
86 |
+
else:
|
87 |
+
assert False, "Unsupported bit-width"
|
88 |
+
|
89 |
+
with torch.cuda.device(weight.device):
|
90 |
+
n, m = weight.size(0), weight.size(1)
|
91 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
|
92 |
+
stream = torch.cuda.current_stream()
|
93 |
+
|
94 |
+
gridDim = (n, 1, 1)
|
95 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
96 |
+
|
97 |
+
func(
|
98 |
+
gridDim,
|
99 |
+
blockDim,
|
100 |
+
0,
|
101 |
+
stream,
|
102 |
+
[
|
103 |
+
ctypes.c_void_p(weight.data_ptr()),
|
104 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
105 |
+
ctypes.c_void_p(out.data_ptr()),
|
106 |
+
ctypes.c_int32(n),
|
107 |
+
ctypes.c_int32(m),
|
108 |
+
],
|
109 |
+
)
|
110 |
+
return out
|
111 |
+
|
112 |
+
|
113 |
+
class QuantizedLinear(Linear):
|
114 |
+
def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, *args, **kwargs):
|
115 |
+
super(QuantizedLinear, self).__init__(*args, **kwargs)
|
116 |
+
self.weight_bit_width = weight_bit_width
|
117 |
+
|
118 |
+
shape = self.weight.shape
|
119 |
+
del self.weight
|
120 |
+
|
121 |
+
if weight_tensor is None:
|
122 |
+
self.weight = torch.empty(
|
123 |
+
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
|
124 |
+
)
|
125 |
+
self.weight_scale = torch.empty(shape[0], dtype=kwargs["params_dtype"], device=kwargs["device"])
|
126 |
+
else:
|
127 |
+
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
|
128 |
+
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
|
129 |
+
if weight_bit_width == 4:
|
130 |
+
self.weight = compress_int4_weight(self.weight)
|
131 |
+
|
132 |
+
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
|
133 |
+
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
|
134 |
+
self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
|
135 |
+
|
136 |
+
def forward(self, input):
|
137 |
+
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
|
138 |
+
if self.bias is not None:
|
139 |
+
output = output + self.bias
|
140 |
+
return output
|
141 |
+
|
142 |
+
|
143 |
+
def quantize(model, weight_bit_width):
|
144 |
+
"""Replace fp16 linear with quantized linear"""
|
145 |
+
|
146 |
+
for layer in model.layers:
|
147 |
+
layer.attention.query_key_value = QuantizedLinear(
|
148 |
+
weight_bit_width=weight_bit_width,
|
149 |
+
weight_tensor=layer.attention.query_key_value.weight.to(torch.cuda.current_device()),
|
150 |
+
bias_tensor=layer.attention.query_key_value.bias,
|
151 |
+
in_features=layer.attention.query_key_value.in_features,
|
152 |
+
out_features=layer.attention.query_key_value.out_features,
|
153 |
+
bias=True,
|
154 |
+
dtype=torch.half,
|
155 |
+
device=layer.attention.query_key_value.weight.device,
|
156 |
+
)
|
157 |
+
layer.attention.dense = QuantizedLinear(
|
158 |
+
weight_bit_width=weight_bit_width,
|
159 |
+
weight_tensor=layer.attention.dense.weight.to(torch.cuda.current_device()),
|
160 |
+
bias_tensor=layer.attention.dense.bias,
|
161 |
+
in_features=layer.attention.dense.in_features,
|
162 |
+
out_features=layer.attention.dense.out_features,
|
163 |
+
bias=True,
|
164 |
+
dtype=torch.half,
|
165 |
+
device=layer.attention.dense.weight.device,
|
166 |
+
)
|
167 |
+
layer.mlp.dense_h_to_4h = QuantizedLinear(
|
168 |
+
weight_bit_width=weight_bit_width,
|
169 |
+
weight_tensor=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
|
170 |
+
bias_tensor=layer.mlp.dense_h_to_4h.bias,
|
171 |
+
in_features=layer.mlp.dense_h_to_4h.in_features,
|
172 |
+
out_features=layer.mlp.dense_h_to_4h.out_features,
|
173 |
+
bias=True,
|
174 |
+
dtype=torch.half,
|
175 |
+
device=layer.mlp.dense_h_to_4h.weight.device,
|
176 |
+
)
|
177 |
+
layer.mlp.dense_4h_to_h = QuantizedLinear(
|
178 |
+
weight_bit_width=weight_bit_width,
|
179 |
+
weight_tensor=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
|
180 |
+
bias_tensor=layer.mlp.dense_4h_to_h.bias,
|
181 |
+
in_features=layer.mlp.dense_4h_to_h.in_features,
|
182 |
+
out_features=layer.mlp.dense_4h_to_h.out_features,
|
183 |
+
bias=True,
|
184 |
+
dtype=torch.half,
|
185 |
+
device=layer.mlp.dense_4h_to_h.weight.device,
|
186 |
+
)
|
187 |
+
return model
|
moe/temp1.wav
ADDED
Binary file (279 kB). View file
|
|
moe/temp2.wav
ADDED
Binary file (557 kB). View file
|
|
moe/tokenization_chatglm.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for ChatGLM."""
|
2 |
+
import sys
|
3 |
+
import unicodedata
|
4 |
+
from typing import List, Optional, Union
|
5 |
+
from functools import lru_cache
|
6 |
+
import os
|
7 |
+
import collections
|
8 |
+
import re
|
9 |
+
|
10 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
11 |
+
from icetk.text_tokenizer import TextTokenizer
|
12 |
+
from icetk.utils import auto_create
|
13 |
+
import icetk.sentencepiece_model_pb2 as sp_model
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
19 |
+
"THUDM/chatglm-6b": 2048,
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
class SPTokenizer:
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
vocab_file,
|
27 |
+
max_blank_length=80,
|
28 |
+
byte_fallback=True,
|
29 |
+
):
|
30 |
+
assert vocab_file is not None
|
31 |
+
self.vocab_file = vocab_file
|
32 |
+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
33 |
+
self.max_blank_length = max_blank_length
|
34 |
+
self.byte_fallback = byte_fallback
|
35 |
+
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False)
|
36 |
+
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def _configure_tokenizer(
|
40 |
+
text_tokenizer: TextTokenizer,
|
41 |
+
special_tokens: List[str],
|
42 |
+
max_blank_length: int,
|
43 |
+
byte_fallback: bool,
|
44 |
+
encode_special_tokens=False,
|
45 |
+
):
|
46 |
+
# special token
|
47 |
+
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
|
48 |
+
for token in special_tokens:
|
49 |
+
text_tokenizer.proto.pieces.append(
|
50 |
+
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
|
51 |
+
)
|
52 |
+
# whitespaces
|
53 |
+
for token in [SPTokenizer.get_tab_token()] + [
|
54 |
+
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
|
55 |
+
]:
|
56 |
+
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
|
57 |
+
# byte fallback
|
58 |
+
if byte_fallback:
|
59 |
+
text_tokenizer.proto.trainer_spec.byte_fallback = True
|
60 |
+
for i in range(256):
|
61 |
+
text_tokenizer.proto.pieces.append(
|
62 |
+
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
|
63 |
+
)
|
64 |
+
text_tokenizer.refresh()
|
65 |
+
|
66 |
+
def _build_text_tokenizer(self, encode_special_tokens=False):
|
67 |
+
tokenizer = TextTokenizer(self.vocab_file)
|
68 |
+
self._configure_tokenizer(
|
69 |
+
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
|
70 |
+
)
|
71 |
+
return tokenizer
|
72 |
+
|
73 |
+
def _get_text_tokenizer(self, encode_special_tokens=False):
|
74 |
+
if encode_special_tokens:
|
75 |
+
return self.special_text_tokenizer
|
76 |
+
else:
|
77 |
+
return self.text_tokenizer
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def get_blank_token(length: int):
|
81 |
+
assert length >= 2
|
82 |
+
return f"<|blank_{length}|>"
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def get_tab_token():
|
86 |
+
return f"<|tab|>"
|
87 |
+
|
88 |
+
@property
|
89 |
+
def num_image_tokens(self):
|
90 |
+
return 20000
|
91 |
+
|
92 |
+
@property
|
93 |
+
def num_text_tokens(self):
|
94 |
+
return self.text_tokenizer.num_tokens
|
95 |
+
|
96 |
+
@property
|
97 |
+
def num_tokens(self):
|
98 |
+
return self.num_image_tokens + self.num_text_tokens
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def _encode_whitespaces(text: str, max_len: int = 80):
|
102 |
+
text = text.replace("\t", SPTokenizer.get_tab_token())
|
103 |
+
for i in range(max_len, 1, -1):
|
104 |
+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
105 |
+
return text
|
106 |
+
|
107 |
+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
108 |
+
if linebreak:
|
109 |
+
text = text.replace("\n", "<n>")
|
110 |
+
if whitespaces:
|
111 |
+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
112 |
+
return text
|
113 |
+
|
114 |
+
def encode(
|
115 |
+
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
116 |
+
) -> List[int]:
|
117 |
+
"""
|
118 |
+
@param text: Text to encode.
|
119 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
120 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
121 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
122 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
123 |
+
"""
|
124 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
125 |
+
if not add_dummy_prefix:
|
126 |
+
text = "<n>" + text
|
127 |
+
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text)
|
128 |
+
tokens = [x + self.num_image_tokens for x in tmp]
|
129 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
130 |
+
|
131 |
+
def decode(self, text_ids: List[int], special_tokens=False) -> str:
|
132 |
+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
133 |
+
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids)
|
134 |
+
text = text.replace("<n>", "\n")
|
135 |
+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
136 |
+
for i in range(2, self.max_blank_length + 1):
|
137 |
+
text = text.replace(self.get_blank_token(i), " " * i)
|
138 |
+
return text
|
139 |
+
|
140 |
+
def tokenize(
|
141 |
+
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
142 |
+
) -> List[str]:
|
143 |
+
"""
|
144 |
+
@param text: Text to encode.
|
145 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
146 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
147 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
148 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
149 |
+
"""
|
150 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
151 |
+
if not add_dummy_prefix:
|
152 |
+
text = "<n>" + text
|
153 |
+
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text)
|
154 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
155 |
+
|
156 |
+
def __getitem__(self, x: Union[int, str]):
|
157 |
+
if isinstance(x, int):
|
158 |
+
if x < self.num_image_tokens:
|
159 |
+
return "<image_{}>".format(x)
|
160 |
+
else:
|
161 |
+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
162 |
+
elif isinstance(x, str):
|
163 |
+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
164 |
+
return int(x[7:-1])
|
165 |
+
else:
|
166 |
+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
167 |
+
else:
|
168 |
+
raise ValueError("The key should be str or int.")
|
169 |
+
|
170 |
+
|
171 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
172 |
+
"""
|
173 |
+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
vocab_file (`str`):
|
177 |
+
Path to the vocabulary file.
|
178 |
+
"""
|
179 |
+
|
180 |
+
vocab_files_names = {"vocab_file": "ice_text.model"}
|
181 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
182 |
+
model_input_names = ["input_ids"]
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
vocab_file,
|
187 |
+
do_lower_case=False,
|
188 |
+
remove_space=False,
|
189 |
+
bos_token='sop',
|
190 |
+
eos_token='eos',
|
191 |
+
eop_token='eop',
|
192 |
+
mask_token='[MASK]',
|
193 |
+
gmask_token='[gMASK]',
|
194 |
+
padding_side="left",
|
195 |
+
**kwargs
|
196 |
+
) -> None:
|
197 |
+
super().__init__(
|
198 |
+
do_lower_case=do_lower_case,
|
199 |
+
remove_space=remove_space,
|
200 |
+
padding_side=padding_side,
|
201 |
+
**kwargs
|
202 |
+
)
|
203 |
+
|
204 |
+
self.do_lower_case = do_lower_case
|
205 |
+
self.remove_space = remove_space
|
206 |
+
self.vocab_file = vocab_file
|
207 |
+
|
208 |
+
self.bos_token = bos_token
|
209 |
+
self.eos_token = eos_token
|
210 |
+
self.eop_token = eop_token
|
211 |
+
self.mask_token = mask_token
|
212 |
+
self.gMASK_token = gmask_token
|
213 |
+
|
214 |
+
self.sp_tokenizer = SPTokenizer(vocab_file)
|
215 |
+
|
216 |
+
""" Initialisation """
|
217 |
+
|
218 |
+
@property
|
219 |
+
def eop_token_id(self) -> Optional[int]:
|
220 |
+
"""
|
221 |
+
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
|
222 |
+
set.
|
223 |
+
"""
|
224 |
+
if self.eop_token is None:
|
225 |
+
return None
|
226 |
+
return self.convert_tokens_to_ids(self.eop_token)
|
227 |
+
|
228 |
+
@property
|
229 |
+
def vocab_size(self):
|
230 |
+
""" Returns vocab size """
|
231 |
+
return self.sp_tokenizer.num_tokens
|
232 |
+
|
233 |
+
def get_vocab(self):
|
234 |
+
""" Returns vocab as a dict """
|
235 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
236 |
+
vocab.update(self.added_tokens_encoder)
|
237 |
+
return vocab
|
238 |
+
|
239 |
+
def preprocess_text(self, inputs):
|
240 |
+
if self.remove_space:
|
241 |
+
outputs = " ".join(inputs.strip().split())
|
242 |
+
else:
|
243 |
+
outputs = inputs
|
244 |
+
|
245 |
+
if self.do_lower_case:
|
246 |
+
outputs = outputs.lower()
|
247 |
+
|
248 |
+
return outputs
|
249 |
+
|
250 |
+
def _tokenize(self, text, **kwargs):
|
251 |
+
""" Returns a tokenized string. """
|
252 |
+
text = self.preprocess_text(text)
|
253 |
+
|
254 |
+
seq = self.sp_tokenizer.tokenize(text)
|
255 |
+
|
256 |
+
return seq
|
257 |
+
|
258 |
+
def decode(
|
259 |
+
self,
|
260 |
+
token_ids: Union[List[int], List[List[int]]],
|
261 |
+
skip_special_tokens: bool = False,
|
262 |
+
clean_up_tokenization_spaces: bool = True,
|
263 |
+
spaces_between_special_tokens: bool = True,
|
264 |
+
**kwargs
|
265 |
+
) -> str:
|
266 |
+
if isinstance(token_ids[0], list):
|
267 |
+
tokens = []
|
268 |
+
for single_token_ids in token_ids:
|
269 |
+
if self.pad_token_id in single_token_ids: # remove pad
|
270 |
+
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids))
|
271 |
+
tokens.append(self.sp_tokenizer.decode(single_token_ids))
|
272 |
+
return (tokens)
|
273 |
+
else:
|
274 |
+
if self.pad_token_id in token_ids: # remove pad
|
275 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
276 |
+
return self.sp_tokenizer.decode(token_ids)
|
277 |
+
|
278 |
+
def _convert_token_to_id(self, token):
|
279 |
+
""" Converts a token (str) in an id using the vocab. """
|
280 |
+
return self.sp_tokenizer[token]
|
281 |
+
|
282 |
+
def _convert_id_to_token(self, index):
|
283 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
284 |
+
return self.sp_tokenizer[index]
|
285 |
+
|
286 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
287 |
+
"""
|
288 |
+
Save the vocabulary and special tokens file to a directory.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
save_directory (`str`):
|
292 |
+
The directory in which to save the vocabulary.
|
293 |
+
filename_prefix (`str`, *optional*):
|
294 |
+
An optional prefix to add to the named of the saved files.
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
`Tuple(str)`: Paths to the files saved.
|
298 |
+
"""
|
299 |
+
if os.path.isdir(save_directory):
|
300 |
+
vocab_file = os.path.join(
|
301 |
+
save_directory, VOCAB_FILES_NAMES["vocab_file"]
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
vocab_file = save_directory
|
305 |
+
|
306 |
+
with open(self.vocab_file, 'rb') as fin:
|
307 |
+
proto_str = fin.read()
|
308 |
+
|
309 |
+
with open(vocab_file, "wb") as writer:
|
310 |
+
writer.write(proto_str)
|
311 |
+
|
312 |
+
return (vocab_file,)
|
313 |
+
|
314 |
+
def build_inputs_with_special_tokens(
|
315 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
316 |
+
) -> List[int]:
|
317 |
+
"""
|
318 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
319 |
+
adding special tokens. A BERT sequence has the following format:
|
320 |
+
|
321 |
+
- single sequence: `[CLS] X [SEP]`
|
322 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
323 |
+
|
324 |
+
Args:
|
325 |
+
token_ids_0 (`List[int]`):
|
326 |
+
List of IDs to which the special tokens will be added.
|
327 |
+
token_ids_1 (`List[int]`, *optional*):
|
328 |
+
Optional second list of IDs for sequence pairs.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
332 |
+
"""
|
333 |
+
if token_ids_1 is not None:
|
334 |
+
token_ids_0 += token_ids_1
|
335 |
+
mask_ids = self.sp_tokenizer[self.mask_token]
|
336 |
+
gmask_ids = self.sp_tokenizer[self.gMASK_token]
|
337 |
+
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
|
338 |
+
token_ids_0 += [gmask_ids]
|
339 |
+
|
340 |
+
if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids:
|
341 |
+
token_ids_0 += [self.sp_tokenizer[self.eos_token]]
|
342 |
+
|
343 |
+
token_ids_0 += [self.sp_tokenizer[self.bos_token]]
|
344 |
+
|
345 |
+
return token_ids_0
|
moe/tokenizer_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "THUDM/chatglm-6b",
|
3 |
+
"bos_token": "<sop>",
|
4 |
+
"eop_token": "<eop>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"gmask_token": "[gMASK]",
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"pad_token": "<pad>",
|
9 |
+
"unk_token": "<unk>",
|
10 |
+
"remove_space": false,
|
11 |
+
"do_lower_case": false,
|
12 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
13 |
+
"auto_map": {
|
14 |
+
"AutoTokenizer": [
|
15 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
16 |
+
null
|
17 |
+
]
|
18 |
+
}
|
19 |
+
}
|
output.wav
ADDED
Binary file (557 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
Cython==0.29.21
|
3 |
+
librosa==0.8.0
|
4 |
+
matplotlib==3.3.1
|
5 |
+
numpy==1.21.6
|
6 |
+
phonemizer==2.2.1
|
7 |
+
scipy==1.5.2
|
8 |
+
tensorboard==2.3.0
|
9 |
+
torch
|
10 |
+
torchvision
|
11 |
+
Unidecode==1.1.1
|
12 |
+
pyopenjtalk==0.2.0
|
13 |
+
jamo==0.4.1
|
14 |
+
pypinyin==0.44.0
|
15 |
+
jieba==0.42.1
|
16 |
+
cn2an==0.5.17
|
17 |
+
jieba==0.42.1
|
18 |
+
ipython==7.34.0
|
19 |
+
gradio==3.4.1
|
20 |
+
openai
|
21 |
+
pydub
|
22 |
+
inflect
|
23 |
+
eng_to_ipa
|
24 |
+
onnxruntime
|
text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
from text.symbols import symbols
|
4 |
+
|
5 |
+
|
6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_sequence(text, cleaner_names):
|
12 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
+
Args:
|
14 |
+
text: string to convert to a sequence
|
15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
16 |
+
Returns:
|
17 |
+
List of integers corresponding to the symbols in the text
|
18 |
+
'''
|
19 |
+
sequence = []
|
20 |
+
|
21 |
+
clean_text = _clean_text(text, cleaner_names)
|
22 |
+
for symbol in clean_text:
|
23 |
+
if symbol not in _symbol_to_id.keys():
|
24 |
+
continue
|
25 |
+
symbol_id = _symbol_to_id[symbol]
|
26 |
+
sequence += [symbol_id]
|
27 |
+
return sequence
|
28 |
+
|
29 |
+
|
30 |
+
def cleaned_text_to_sequence(cleaned_text):
|
31 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
32 |
+
Args:
|
33 |
+
text: string to convert to a sequence
|
34 |
+
Returns:
|
35 |
+
List of integers corresponding to the symbols in the text
|
36 |
+
'''
|
37 |
+
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
|
38 |
+
return sequence
|
39 |
+
|
40 |
+
|
41 |
+
def sequence_to_text(sequence):
|
42 |
+
'''Converts a sequence of IDs back to a string'''
|
43 |
+
result = ''
|
44 |
+
for symbol_id in sequence:
|
45 |
+
s = _id_to_symbol[symbol_id]
|
46 |
+
result += s
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
def _clean_text(text, cleaner_names):
|
51 |
+
for name in cleaner_names:
|
52 |
+
cleaner = getattr(cleaners, name)
|
53 |
+
if not cleaner:
|
54 |
+
raise Exception('Unknown cleaner: %s' % name)
|
55 |
+
text = cleaner(text)
|
56 |
+
return text
|
text/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (2.1 kB). View file
|
|
text/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (2.15 kB). View file
|
|
text/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (2.13 kB). View file
|
|
text/__pycache__/cleaners.cpython-37.pyc
ADDED
Binary file (4.1 kB). View file
|
|
text/__pycache__/cleaners.cpython-38.pyc
ADDED
Binary file (6.42 kB). View file
|
|
text/__pycache__/cleaners.cpython-39.pyc
ADDED
Binary file (6.37 kB). View file
|
|
text/__pycache__/english.cpython-37.pyc
ADDED
Binary file (4.94 kB). View file
|
|
text/__pycache__/english.cpython-38.pyc
ADDED
Binary file (4.88 kB). View file
|
|
text/__pycache__/english.cpython-39.pyc
ADDED
Binary file (4.86 kB). View file
|
|
text/__pycache__/japanese.cpython-37.pyc
ADDED
Binary file (4.61 kB). View file
|
|
text/__pycache__/japanese.cpython-38.pyc
ADDED
Binary file (4.47 kB). View file
|
|
text/__pycache__/japanese.cpython-39.pyc
ADDED
Binary file (4.43 kB). View file
|
|
text/__pycache__/korean.cpython-37.pyc
ADDED
Binary file (5.76 kB). View file
|
|
text/__pycache__/mandarin.cpython-37.pyc
ADDED
Binary file (7.52 kB). View file
|
|
text/__pycache__/mandarin.cpython-38.pyc
ADDED
Binary file (6.43 kB). View file
|
|
text/__pycache__/mandarin.cpython-39.pyc
ADDED
Binary file (6.4 kB). View file
|
|
text/__pycache__/sanskrit.cpython-37.pyc
ADDED
Binary file (1.64 kB). View file
|
|