Text Generation
Transformers
PyTorch
Safetensors
English
Chinese
llama
axolotl
Generated from Trainer
conversational
text-generation-inference
Inference Endpoints
File size: 7,744 Bytes
acf1f27
 
 
 
 
 
 
d2578eb
acf1f27
93ec240
 
 
 
 
 
 
acf1f27
 
93ec240
 
d2578eb
93ec240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2578eb
93ec240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acf1f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ec240
acf1f27
 
 
 
 
 
 
 
 
93ec240
acf1f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3-8B-Magpie-Align-SFT-v0.3
  results: []
datasets:
- Magpie-Align/Magpie-Reasoning-150K
- Magpie-Align/Magpie-Pro-MT-300K-v0.1
- Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese
language:
- en
- zh
---

![Magpie](https://cdn-uploads.huggingface.co/production/uploads/653df1323479e9ebbe3eb6cc/FWWILXrAGNwWr52aghV0S.png)

# 🐦 Llama-3-8B-Magpie-Align-SFT-v0.3

Project Web: [https://magpie-align.github.io/](https://magpie-align.github.io/)

Arxiv Technical Report: [https://arxiv.org/abs/2406.08464](https://arxiv.org/abs/2406.08464)

Codes: [https://github.com/magpie-align/magpie](https://github.com/magpie-align/magpie)

## 🧐 About This Model

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on 
- [Magpie-Align/Magpie-Pro-MT-300K-v0.1](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-MT-300K-v0.1),
- [Magpie-Align/Magpie-Reasoning-150K](https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-150K), and
- [Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese)

Compared to [v0.2](https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-SFT-v0.2), we enhance its multi-lingual ability by incorporating a new dataset with 200K Chinese instructions. It achieves performance comparable with the official Llama-3-8B-Instruct Model **with SFT only**! The detailed benchmark performance is as follows:

- **MT-Bench: 8.050 (1st Turn), 7.350 (Second Turn), 7.700 (Average)**
- **Alpaca Eval 2 (GPT-4-Turbo-1106): 26.37 (LC), 26.42 (WR)**
- **Alpaca Eval 2 (Llama-3-8B-Instruct): 54.53 (LC), 55.26 (WR)**
- **Arena Hard: 20.6**

## πŸ‘€ Other Information

**License**: Please follow [Meta Llama 3 Community License](https://llama.meta.com/llama3/license).

**Conversation Template**: Please use Llama 3 **official chat template** for the best performance.

**How to use it?** Please check the official [Llama 3 repository](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#how-to-use) for detailed instructions. Simply replace the original `model_id` with `Magpie-Align/Llama-3-8B-Magpie-Align-SFT-v0.3`.

## πŸ“š Citation

If you find the model, data, or code useful, please cite our paper:
```
@article{xu2024magpie,
	title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, 
	author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin},
	year={2024},
	eprint={2406.08464},
	archivePrefix={arXiv},
	primaryClass={cs.CL}
}
```
**Questions?** Please contact [Zhangchen](https://zhangchenxu.com/) by email.

## Paper Abstract
<details><summary>Click Here</summary>
High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.
</details><be>

## πŸƒβ€β™‚οΈβ€βž‘οΈ Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 98
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8616        | 0.0019 | 1    | 0.8870          |
| 0.5554        | 0.2013 | 106  | 0.5568          |
| 0.5067        | 0.4027 | 212  | 0.5065          |
| 0.4728        | 0.6040 | 318  | 0.4865          |
| 0.4681        | 0.8054 | 424  | 0.4740          |
| 0.4563        | 1.0067 | 530  | 0.4662          |
| 0.4115        | 1.1944 | 636  | 0.4642          |
| 0.3993        | 1.3957 | 742  | 0.4620          |
| 0.4048        | 1.5971 | 848  | 0.4613          |
| 0.4167        | 1.7984 | 954  | 0.4611          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1

*Internal name for identification: Llama-3-8B-Magpie-Mix-RC*. Please change the model name in the below Axolotl config.

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Magpie-Align/Magpie-Reasoning-150K
    type: sharegpt
    conversation: llama3
  - path: Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese
    type: sharegpt
    conversation: llama3
  - path: Magpie-Align/Magpie-Pro-MT-300K-v0.1
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/Llama-3-8B-Magpie-Mix-RC

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-Magpie-Mix-RC
wandb_log_model:
hub_model_id: Magpie-Align/Llama-3-8B-Magpie-Mix-RC

gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>