File size: 45,844 Bytes
fbed214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
# This code serves as a port of the models described in BatGPT.
# It is based on the bloom codebase, which provides the initial framework for our model implementation.
# To understand how to use these models, please refer to the documentation and usage instructions provided in the bloom models repository.
# Additionally, we draw inspiration from the ChatGLM and Baichuan codebase, which includes implementations for prefix encoder, chat, and stream_chat functionalities. These components are utilized in our ported models.
# Feel free to explore the ChatGLM and Baichuan codebase for further insights on how these components can be utilized effectively.
import math
import warnings
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F
from torch.nn.utils import skip_init
import copy
import re
import sys
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
from .configuration_batgpt import BatGPTConfig
logger = logging.get_logger(__name__)
# flags required to enable jit fusion kernels
if sys.platform != 'darwin':
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
# For faster llm model initilization
def module_init(cls, empty_init, *args, **kwargs):
if empty_init:
return skip_init(cls, *args, **kwargs)
else:
return cls(*args, **kwargs)
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 5] = 5e4
return scores
class PrefixEncoder(torch.nn.Module):
"""
The torch.nn model to encode the prefix
Input shape: (batch-size, prefix-length)
Output shape: (batch-size, prefix-length, 2*layers*hidden)
"""
def __init__(self, config: BatGPTConfig):
super().__init__()
self.prefix_proj = config.prefix_proj
self.head_dim = config.hidden_size // config.n_head
if self.prefix_proj:
# Use a two-layer MLP to encode the prefix
kv_size = config.n_layer * self.head_dim * config.num_heads_per_kv * 2
self.embedding = torch.nn.Embedding(config.prefix_size, kv_size)
self.trans = torch.nn.Sequential(
torch.nn.Linear(kv_size, config.hidden_size),
torch.nn.Tanh(),
torch.nn.Linear(config.hidden_size, kv_size)
)
else:
self.embedding = torch.nn.Embedding(config.prefix_size,
config.n_layer * self.head_dim * config.num_heads_per_kv * 2)
def forward(self, prefix: torch.Tensor):
if self.prefix_proj:
prefix_tokens = self.embedding(prefix)
past_key_values = self.trans(prefix_tokens)
else:
past_key_values = self.embedding(prefix)
return past_key_values
def _get_interleave(n):
def _get_interleave_power_of_2(n):
start = (2 ** (-2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio ** i for i in range(n)]
if math.log2(n).is_integer():
return _get_interleave_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return _get_interleave_power_of_2(closest_power_of_2) + \
_get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
def _fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _gen_alibi_mask(n_head, max_pos):
"""used in inference only"""
slopes = torch.Tensor(_get_interleave(n_head))
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
n_head, -1, -1)
alibi = alibi.view(n_head, 1, max_pos)
alibi_mask = torch.triu(
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
)
alibi_mask = alibi_mask.unsqueeze(0) + alibi
return alibi_mask
def _build_position_ids(input_ids, device):
batch_size, seq_length = input_ids.shape
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
return position_ids
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
"""used in training only"""
dim = tensor.size(0)
_future_mask = torch.triu(
_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
)
_future_mask = _future_mask.unsqueeze(0) + alibi
_future_mask = _future_mask.to(tensor)
return _future_mask[:tensor.shape[1] * attn_heads, :maxpos, :maxpos]
@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [sq, b, np, hn]
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:sq]
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)
class RMSNorm(torch.nn.Module):
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
self.eps = eps
def forward(self, hidden_states: torch.Tensor):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return (self.weight * hidden_states).to(input_dtype)
class SelfAttention(torch.nn.Module):
def __init__(self, config: BatGPTConfig, device=None):
super(SelfAttention, self).__init__()
self.num_heads = config.n_head
self.use_multi_query_attn = config.use_multi_query_attn
self.num_heads_per_kv = config.num_heads_per_kv
self.qkv_bias = config.qkv_bias
self.use_native_attn_impl = config.use_native_attn_impl
if not self.use_multi_query_attn:
assert self.num_heads_per_kv == self.num_heads, "num_heads_per_kv must equal to num_heads when not use_multi_query_attn"
self.head_dim = config.hidden_size // config.n_head
self.query_proj = nn.Linear(
config.hidden_size, config.hidden_size, bias=self.qkv_bias,
device=device, **_config_to_kwargs(config)
)
self.key_proj = nn.Linear(
config.hidden_size, self.head_dim * self.num_heads_per_kv, bias=self.qkv_bias,
device=device, **_config_to_kwargs(config)
)
self.value_proj = nn.Linear(
config.hidden_size, self.head_dim * self.num_heads_per_kv, bias=self.qkv_bias,
device=device, **_config_to_kwargs(config)
)
# Output.
self.dense = nn.Linear(
config.hidden_size, config.hidden_size, bias=False,
device=device, **_config_to_kwargs(config)
)
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True
):
# 1. query/key/value mapping
# hidden_states: [seq_len, batch_size, hidden_size]
seq_len, batch_size, hidden_size = hidden_states.shape
query_layer = self.query_proj(hidden_states)
key_layer = self.key_proj(hidden_states)
value_layer = self.value_proj(hidden_states)
query_layer = query_layer.view(seq_len, batch_size, self.num_heads, self.head_dim)
key_layer = key_layer.view(seq_len, batch_size, self.num_heads_per_kv, self.head_dim)
value_layer = value_layer.view(seq_len, batch_size, self.num_heads_per_kv, self.head_dim)
# 2. apply the rotary position embedding
if rotary_pos_emb is not None:
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
# 3. adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
key_layer = torch.cat((cache_k, key_layer), dim=0)
value_layer = torch.cat((cache_v, value_layer), dim=0)
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
# 4. repeat the key and value for attention
if self.num_heads_per_kv != self.num_heads:
key_layer = key_layer.unsqueeze(-2)
key_layer = key_layer.expand(
-1, -1, -1, self.num_heads // self.num_heads_per_kv, -1
)
key_layer = key_layer.contiguous().view(
key_layer.size()[:2] + (self.num_heads, self.head_dim)
)
value_layer = value_layer.unsqueeze(-2)
value_layer = value_layer.expand(
-1, -1, -1, self.num_heads // self.num_heads_per_kv, -1
)
value_layer = value_layer.contiguous().view(
value_layer.size()[:2] + (self.num_heads, self.head_dim)
)
# 5. attention [seq_len, batch_size, num_heads, head_dim] -> [batch_size, num_heads, seq_len, head_dim]
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
pytorch_version = int(torch.__version__.split('.')[0])
if self.use_native_attn_impl and pytorch_version >= 2:
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
is_causal=True)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
attention_mask)
else:
attention_scores = torch.matmul(query_layer, key_layer.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
if seq_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attention_scores = attention_scores + attention_mask
attention_scores = torch.max(attention_scores, torch.tensor(torch.finfo(attention_scores.dtype).min))
attention_probs = torch.nn.functional.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value_layer)
# [batch_size, num_heads, seq_len, head_dim] -> [seq_len, batch_size, num_heads, head_dim]
context_layer = context_layer.permute(2, 0, 1, 3)
# [seq_len, batch_size, hidden_size]
context_layer = context_layer.reshape(seq_len, batch_size, hidden_size)
#
output = self.dense(context_layer)
return output, kv_cache
def _config_to_kwargs(args):
common_kwargs = {
"dtype": args.torch_dtype,
}
return common_kwargs
class MLP(torch.nn.Module):
def __init__(self, config: BatGPTConfig, device=None):
super(MLP, self).__init__()
self.mlp_activation = config.mlp_activation
def swiglu(x):
x = torch.chunk(x, 2, dim=-1)
return F.silu(x[0]) * x[1]
def silu(x):
return F.silu(x)
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
if self.mlp_activation == "swiglu":
self.activation_func = swiglu
self.gate_proj = None
self.dense_h_to_4h = nn.Linear(
config.hidden_size,
config.ffn_hidden_size * 2,
bias=False,
device=device,
**_config_to_kwargs(config)
)
elif self.mlp_activation == "silu":
self.activation_func = silu
self.gate_proj = nn.Linear(
config.hidden_size,
config.ffn_hidden_size,
bias=False,
device=device,
**_config_to_kwargs(config)
)
self.dense_h_to_4h = nn.Linear(
config.hidden_size,
config.ffn_hidden_size,
bias=False,
device=device,
**_config_to_kwargs(config)
)
else:
raise NotImplementedError("mlp_activation {} not supported".format(self.mlp_activation))
# Project back to h.
self.dense_4h_to_h = nn.Linear(
config.ffn_hidden_size,
config.hidden_size,
bias=False,
device=device,
**_config_to_kwargs(config)
)
def forward(self, hidden_states):
# [s, b, 4hp]
intermediate_parallel = self.dense_h_to_4h(hidden_states)
if self.mlp_activation == "swiglu":
intermediate_parallel = self.activation_func(intermediate_parallel)
elif self.mlp_activation == "silu":
gated_weight = self.activation_func(self.gate_proj(hidden_states))
intermediate_parallel = gated_weight * intermediate_parallel
else:
raise NotImplementedError("mlp_activation {} not supported".format(self.mlp_activation))
# [s, b, h]
output = self.dense_4h_to_h(intermediate_parallel)
return output
class BatGPTLayer(torch.nn.Module):
"""A single transformer layer.
Transformer layer takes input with size [s, b, h] and returns an
output of the same size.
"""
def __init__(self, config: BatGPTConfig, device=None):
super(BatGPTLayer, self).__init__()
# Layernorm on the input data.
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon, device=device,
dtype=config.torch_dtype)
# Self attention.
self.self_attention = SelfAttention(config, device=device)
self.hidden_dropout = config.hidden_dropout
# Layernorm on the attention output
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon, device=device,
dtype=config.torch_dtype)
# MLP
self.mlp = MLP(config, device=device)
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
):
# hidden_states: [s, b, h]
residual = hidden_states
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attention_output, kv_cache = self.self_attention(
layernorm_output,
attention_mask,
rotary_pos_emb,
kv_cache=kv_cache,
use_cache=use_cache
)
# Residual connection.
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
layernorm_input = residual + layernorm_input
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Second residual connection.
residual = layernorm_input
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
output = residual + output
return output, kv_cache
class BatGPTTransformer(torch.nn.Module):
"""Transformer class."""
def __init__(self, config: BatGPTConfig, device=None):
super(BatGPTTransformer, self).__init__()
# Number of layers.
self.num_layers = config.n_layer
# Transformer layers.
def build_layer():
return BatGPTLayer(config, device=device)
self.layers = torch.nn.ModuleList([build_layer() for i in range(self.num_layers)])
# final layer norm before output.
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon, device=device,
dtype=config.torch_dtype)
self.gradient_checkpointing = False
def _get_layer(self, layer_number):
return self.layers[layer_number]
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
):
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
for index in range(self.num_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer = self._get_layer(index)
if self.gradient_checkpointing and self.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches[index],
use_cache
)
else:
layer_ret = layer(
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=kv_caches[index],
use_cache=use_cache
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.ln_f(hidden_states)
return hidden_states, presents, all_hidden_states, all_self_attentions
class BatGPTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
is_parallelizable = False
supports_gradient_checkpointing = True
config_class = BatGPTConfig
base_model_prefix = "transformer"
_no_split_modules = ["BatGPTLayer"]
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
return
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BatGPTTransformer):
module.gradient_checkpointing = value
class BatGPTModel(BatGPTPreTrainedModel):
def __init__(self, config: BatGPTConfig, device=None):
super().__init__(config)
self.num_layers = config.n_layer
self.num_heads = config.n_head
self.head_dim = config.hidden_size // config.n_head
self.max_seq_len = config.max_seq_len
self.pos_emb_impl = config.pos_emb_impl
self.model_cache_seq_len = 1024
# word embedding
self.word_embeddings = module_init(nn.Embedding,
config.empty_init,
config.vocab_size,
config.emb_dim,
dtype=config.torch_dtype,
device=device
)
self.emb_fact = None
if config.use_emb_factorization or config.emb_dim != config.hidden_size:
self.emb_fact = nn.Linear(config.emb_dim, config.hidden_size, bias=False,
dtype=config.torch_dtype, device=device)
init_kwargs = {}
if device is not None:
init_kwargs["device"] = device
self.encoder = module_init(BatGPTTransformer, config.empty_init, config, **init_kwargs)
self.first_run = True
self.alibi_mask = None
self.prefix_size = config.prefix_size
self.prefix_proj = config.prefix_proj
if self.prefix_size is not None:
for param in self.parameters():
param.requires_grad = False
self.prefix_tokens = torch.arange(self.prefix_size).long()
self.prefix_encoder = PrefixEncoder(config)
self.dropout = torch.nn.Dropout(0.1)
def get_input_embeddings(self):
return self.word_embeddings
def get_prompt(self, batch_size, device, dtype=torch.half):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
past_key_values = past_key_values.view(
batch_size,
self.prefix_size,
self.num_layers * 2,
self.multi_query_group_num,
self.kv_channels
)
# seq_len, b, nh, hidden_size
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
return past_key_values
def get_rotary_tensor(self, seq_len: int, head_dim: int, dtype: torch.dtype, device: torch.device, base: int = 10000):
n_elem = head_dim // 2
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).float()
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
# this is to mimic the behaviour of complex32, else we will get different results
if dtype in (torch.float16, torch.bfloat16, torch.int8):
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
return cache
def get_causal_mask(self, input_ids, past_key_values, attention_mask=None) -> torch.BoolTensor:
batch_size, seq_length = input_ids.shape
# B x L x L
causal_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
causal_mask.tril_()
past_length = 0
if past_key_values:
past_length = past_key_values[0][0].shape[0]
if past_length:
causal_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
device=input_ids.device), causal_mask), dim=-1)
if attention_mask is not None:
causal_mask = causal_mask * attention_mask.unsqueeze(1)
if not past_length and attention_mask is not None:
causal_mask -= attention_mask.unsqueeze(-1) - 1
causal_mask = (causal_mask < 0.5).bool()
causal_mask.unsqueeze_(1)
return causal_mask
def get_alibi_mask(self, tensor, seq_length_with_past):
if self.training:
slopes = torch.Tensor(_get_interleave(self.num_heads))
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
self.num_heads,
-1, -1)
alibi = alibi.view(self.num_heads, 1, seq_length_with_past)
mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.num_heads)
else:
if self.first_run:
self.first_run = False
self.register_buffer("future_mask", _gen_alibi_mask(self.num_heads, self.model_cache_seq_len).to(tensor), persistent=False)
if seq_length_with_past > self.model_cache_seq_len:
self.model_cache_seq_len = seq_length_with_past
self.register_buffer("future_mask", _gen_alibi_mask(self.num_heads, self.model_cache_seq_len).to(tensor), persistent=False)
mask = self.future_mask[:self.num_heads, :seq_length_with_past, :seq_length_with_past]
return mask
def forward(
self,
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
seq_length_with_past = seq_length
# -> word embedding
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# [b s h] --> [s b h].
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
if self.prefix_size is not None:
if past_key_values is None:
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
dtype=inputs_embeds.dtype)
if attention_mask is not None:
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.prefix_size)),
attention_mask], dim=-1)
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[0]
seq_length_with_past = seq_length_with_past + past_key_values_length
full_attention_mask = None
rotary_pos_emb=None
if self.pos_emb_impl == "alibi":
if self.training:
if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
alibi_mask = self.alibi_mask
else:
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
if attention_mask is not None:
if len(attention_mask.shape) == 2:
expanded_mask = attention_mask.to(alibi_mask.dtype)
expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
else:
expanded_mask = attention_mask
src_len, tgt_len = alibi_mask.size()[-2:]
expanded_mask = expanded_mask.unsqueeze(1).expand(batch_size, 1, src_len, tgt_len).to(alibi_mask.dtype)
# Target sizes: [1, 1, 41, 41]. Tensor sizes: [1, 1, 8, 8]
inverted_mask = 1.0 - expanded_mask
inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
full_attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
else:
full_attention_mask = alibi_mask
elif self.pos_emb_impl == "rope":
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
# B x 1 x L x L
full_attention_mask = self.get_causal_mask(input_ids, past_key_values, attention_mask)
# Rotary positional embeddings
rotary_pos_emb = self.get_rotary_tensor(self.max_seq_len, self.head_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
else:
raise NotImplementedError("position embedding type: {} not supported!".format(self.pos_emb_impl))
# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states
)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class BatGPTForCausalLM(BatGPTPreTrainedModel):
def __init__(self, config: BatGPTConfig, device=None):
super().__init__(config)
self.max_sequence_length = config.max_length
self.model = BatGPTModel(config, device=device)
self.lm_head = module_init(nn.Linear, config.empty_init, config.hidden_size, config.vocab_size, bias=False,
dtype=config.torch_dtype, device=device)
self.config = config
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
# update position ids
if "position_ids" in model_kwargs:
position_ids = model_kwargs["position_ids"]
new_position_id = position_ids[..., -1:].clone()
new_position_id += 1
model_kwargs["position_ids"] = torch.cat(
[position_ids, new_position_id], dim=-1
)
model_kwargs["is_first_forward"] = False
return model_kwargs
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
is_first_forward: bool = True,
**kwargs
) -> dict:
# only last token for input_ids if past is not None
if position_ids is None:
position_ids = _build_position_ids(input_ids, device=input_ids.device)
if not is_first_forward:
position_ids = position_ids[..., -1:]
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"position_ids": position_ids,
"attention_mask": attention_mask,
"return_last_logit": True
}
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encodings = self.model(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encodings[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
lm_logits = self.lm_head(hidden_states)
lm_logits = lm_logits.transpose(0, 1).contiguous()
loss = None
if labels is not None:
lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + encodings[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=encodings.past_key_values,
hidden_states=encodings.hidden_states,
attentions=encodings.attentions,
)
@staticmethod
def _reorder_cache(
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
return tuple(
(
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
)
for layer_past in past
)
def process_response(self, response):
response = response.strip()
return response
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, system_prompt = None):
inputs = tokenizer.build_inputs(query, history=history, system_prompt=system_prompt)
inputs = inputs.to(self.device)
return inputs
def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, system_prompt = None):
inputs = tokenizer.build_stream_inputs(query, history=history, system_prompt=system_prompt)
inputs = inputs.to(self.device)
return inputs
@torch.no_grad()
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, system_prompt=None, max_length: int = 8192, num_beams=1,
do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
if history is None:
history = []
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
"temperature": temperature, **kwargs} #, "logits_processor": logits_processor
inputs = self.build_inputs(tokenizer, query, history=history, system_prompt=system_prompt)
outputs = self.generate(**inputs, **gen_kwargs)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
response = tokenizer.decode(outputs, skip_special_tokens=True) #
response = self.process_response(response)
history = history + [(query, response)]
return response, history
@torch.no_grad()
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, system_prompt=None, past_key_values=None,
max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
return_past_key_values=False, **kwargs):
if history is None:
history = []
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
if past_key_values is None and not return_past_key_values:
inputs = self.build_inputs(tokenizer, query, history=history, system_prompt=system_prompt)
else:
inputs = self.build_stream_inputs(tokenizer, query, history=history, system_prompt=system_prompt)
if past_key_values is not None:
past_length = past_key_values[0][0].shape[0]
if self.model.prefix_size is not None:
past_length -= self.transformer.prefix_size
inputs.position_ids += past_length
attention_mask = inputs.attention_mask
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
inputs['attention_mask'] = attention_mask
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
return_past_key_values=return_past_key_values, **gen_kwargs):
if return_past_key_values:
outputs, past_key_values = outputs
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
response = tokenizer.decode(outputs)
if response and response[-1] != "�":
response = self.process_response(response)
new_history = history + [(query, response)]
if return_past_key_values:
yield response, new_history, past_key_values
else:
yield response, new_history
@torch.no_grad()
def stream_generate(
self,
input_ids,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
return_past_key_values=False,
**kwargs,
):
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs)
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logger.warn(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
logits_warper = self._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
scores = None
while True:
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
if return_past_key_values:
yield input_ids, outputs.past_key_values
else:
yield input_ids
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
break
|