Edit model card

Albert-finetuned-stationary-update

This model is a fine-tuned version of albert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7542
  • Accuracy: 0.5967
  • F1: 0.5862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3976 1.0 38 0.8830 0.6033 0.5849
0.3105 2.0 76 0.9030 0.63 0.5876
0.2256 3.0 114 1.2156 0.6333 0.6366
0.1788 4.0 152 1.3055 0.6 0.5857
0.161 5.0 190 1.2205 0.59 0.5808
0.1304 6.0 228 1.5496 0.5933 0.5804
0.1046 7.0 266 1.6266 0.59 0.5915
0.0966 8.0 304 1.6807 0.6033 0.5971
0.0649 9.0 342 1.7279 0.5967 0.5831
0.0697 10.0 380 1.7542 0.5967 0.5862

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
11.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MKS3099/Albert-finetuned-stationary-update

Finetuned
(162)
this model