MISHANM/deepseek-ai-DeepSeek-R1-BF16.gguf
The deepseek-ai/DeepSeek-R1 model has been converted into a GGUF format for optimal use with the llama.cpp framework, ensuring efficient performance. Tested on an AMD EPYC™ 9755 CPUs, the model demonstrates robust capabilities in handling complex natural language processing tasks with speed and accuracy. This CPU-focused optimization offers a cost-effective solution for users who prefer or require CPU-based processing, eliminating the need for specialized GPU hardware. Ideal for various applications, from research to production, this version provides a reliable and versatile tool for achieving high performance in natural language processing tasks.
Model Details
- Language: English
- Tasks: Text generation
- Base Model: deepseek-ai/DeepSeek-R1
Building and Running the Model
To build and run the model using llama.cpp
, follow these steps:
Model
Steps to Download the Model:
- Go to the "Files and Versions" section.
- Click on the model.
- Copy the download link.
- Create a directory (e.g., for Linux: mkdir DeepSeek-R1).
- Navigate to that directory (cd DeepSeek-R1).
- Download the model parts: DeepSeek-R1-BF16.gguf.part_01, DeepSeek-R1-BF16.gguf.part_02, DeepSeek-R1-BF16.gguf.part_03, DeepSeek-R1-BF16.gguf.part_04, DeepSeek-R1-BF16.gguf.part_05, DeepSeek-R1-BF16.gguf.part_06, DeepSeek-R1-BF16.gguf.part_07, DeepSeek-R1-BF16.gguf.part_08, DeepSeek-R1-BF16.gguf.part_09, DeepSeek-R1-BF16.gguf.part_10, DeepSeek-R1-BF16.gguf.part_11, DeepSeek-R1-BF16.gguf.part_12, DeepSeek-R1-BF16.gguf.part_13, DeepSeek-R1-BF16.gguf.part_14, DeepSeek-R1-BF16.gguf.part_15, DeepSeek-R1-BF16.gguf.part_16, DeepSeek-R1-BF16.gguf.part_17, DeepSeek-R1-BF16.gguf.part_18, DeepSeek-R1-BF16.gguf.part_19,DeepSeek-R1-BF16.gguf.part_20, DeepSeek-R1-BF16.gguf.part_21, DeepSeek-R1-BF16.gguf.part_22, DeepSeek-R1-BF16.gguf.part_23, DeepSeek-R1-BF16.gguf.part_24, DeepSeek-R1-BF16.gguf.part_25, DeepSeek-R1-BF16.gguf.part_26, DeepSeek-R1-BF16.gguf.part_27, DeepSeek-R1-BF16.gguf.part_28, DeepSeek-R1-BF16.gguf.part_29, DeepSeek-R1-BF16.gguf.part_30, DeepSeek-R1-BF16.gguf.part_31, DeepSeek-R1-BF16.gguf.part_32 (e.g., using wget with the copied link).
After downloading the model parts, use the following command to combine them into a complete model:
cat DeepSeek-R1-BF16.gguf.part_01 DeepSeek-R1-BF16.gguf.part_02 DeepSeek-R1-BF16.gguf.part_03 DeepSeek-R1-BF16.gguf.part_04 DeepSeek-R1-BF16.gguf.part_05 DeepSeek-R1-BF16.gguf.part_06 DeepSeek-R1-BF16.gguf.part_07 DeepSeek-R1-BF16.gguf.part_08 DeepSeek-R1-BF16.gguf.part_09 DeepSeek-R1-BF16.gguf.part_10 DeepSeek-R1-BF16.gguf.part_11 DeepSeek-R1-BF16.gguf.part_12 DeepSeek-R1-BF16.gguf.part_13 DeepSeek-R1-BF16.gguf.part_14 DeepSeek-R1-BF16.gguf.part_15 DeepSeek-R1-BF16.gguf.part_16 DeepSeek-R1-BF16.gguf.part_17 DeepSeek-R1-BF16.gguf.part_18 DeepSeek-R1-BF16.gguf.part_19 DeepSeek-R1-BF16.gguf.part_20 DeepSeek-R1-BF16.gguf.part_21 DeepSeek-R1-BF16.gguf.part_22 DeepSeek-R1-BF16.gguf.part_23 DeepSeek-R1-BF16.gguf.part_24 DeepSeek-R1-BF16.gguf.part_25 DeepSeek-R1-BF16.gguf.part_26 DeepSeek-R1-BF16.gguf.part_27 DeepSeek-R1-BF16.gguf.part_28 DeepSeek-R1-BF16.gguf.part_29 DeepSeek-R1-BF16.gguf.part_30 DeepSeek-R1-BF16.gguf.part_31 DeepSeek-R1-BF16.gguf.part_32 > deepseek-ai-DeepSeek-R1-BF16.gguf
Build llama.cpp Locally
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
cmake -B build
cmake --build build --config Release
Run the Model
Navigate to the build directory and run the model with a prompt:
cd llama.cpp/build/bin
Inference with llama.cpp
./llama-cli -m /path/to/deepseek-ai-DeepSeek-R1-BF16.gguf/ -p "Your prompt here" -n 500 --ctx-size 8192 --temp 0.6 --seed 3407
Citation Information
@misc{MISHANM/deepseek-ai-DeepSeek-R1-BF16.gguf,
author = {Mishan Maurya},
title = {Introducing deepseek-ai-DeepSeek-R1-BF16.gguf Model},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
Model tree for MISHANM/deepseek-ai-DeepSeek-R1-BF16.gguf
Base model
deepseek-ai/DeepSeek-R1