MISHANM/Multilingual_Llama-3-8B-Instruct

This model is fine-tuned for Multi languages , capable of answering queries and translating text from English to Multiple languages . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.

Model Details

This model is based on meta-llama/Llama-3.2-3B-Instruct and has been LoRA finetuned on Multi language datasets:

  1. Gujarati
  2. Kannada
  3. Hindi
  4. Odia
  5. Punjabi
  6. Bengali
  7. Tamil
  8. Telugu

Training Details

The model is trained on approx 321K instruction samples.

  1. GPUs: 2*AMD Instinct™ MI210 Accelerators

Inference with HuggingFace


import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Multilingual_Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_path)

# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
   print(f"Using {torch.cuda.device_count()} GPUs")
   model = torch.nn.DataParallel(model)

# Move the model to the appropriate device
model.to(device)

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
   # Format the prompt according to the chat template
   messages = [
       {
           "role": "system",
           "content": "You are a language expert and linguist, with same knowledge give response in ().", #In place of "()" write your desired language in which response is required. ",
       },
       {"role": "user", "content": prompt}
   ]

   # Apply the chat template
   formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

   # Tokenize and generate output
   inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
   output = model.module.generate(  # Use model.module for DataParallel
       **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
   )
   return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """Write a story about LLM ."""
translated_text = generate_text(prompt)
print(translated_text)

Citation Information

@misc{MISHANM/Multilingual_Llama-3-8B-Instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Indic Languages},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
  • PEFT 0.12.0
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for MISHANM/Multilingual_Llama-3-8B-Instruct

Adapter
(751)
this model

Datasets used to train MISHANM/Multilingual_Llama-3-8B-Instruct