Text Generation
Transformers
Safetensors
imp
custom_code
File size: 23,567 Bytes
a895cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright (c) MILVLG team.
# Licensed under the Apache 2.0 license.
#
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by 
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
# And their original licenses and copyright should be inherited (see the statements
# in `configuration_imp.py` for more details).


from typing import Any, Optional, Tuple, Union, List, Dict
from dataclasses import dataclass
import math
import warnings
from functools import partial, reduce


import numpy as np
from PIL import Image
import torch
import torch.utils.checkpoint
from torch import nn

from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import (
    convert_to_rgb,
    normalize,
    rescale,
    resize,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    ChannelDimension,
    PILImageResampling,
    to_numpy_array,
)
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput

from .configuration_imp import SiglipVisionConfig


# ============================================================================
# A simple image preprocessor for SigLIP models. 
# ============================================================================

def simple_image_processor(
        images, 
        image_mean=(0.5, 0.5, 0.5), 
        image_std=(0.5, 0.5, 0.5), 
        size=(384, 384), 
        resample=PILImageResampling.BICUBIC, 
        rescale_factor=1 / 255, 
        data_format=ChannelDimension.FIRST,
        return_tensors="pt"
    ):

    if isinstance(images, Image.Image):
        images = [images]
    else:
        assert isinstance(images, list)
    
    transforms = [
        convert_to_rgb,
        to_numpy_array,
        partial(resize, size=size, resample=resample, data_format=data_format),
        partial(rescale, scale=rescale_factor, data_format=data_format),
        partial(normalize, mean=image_mean, std=image_std, data_format=data_format),
        partial(to_channel_dimension_format, channel_dim=data_format, input_channel_dim=data_format),
    ]

    images = reduce(lambda x, f: [*map(f, x)], transforms, images)
    data = {"pixel_values": images}
    
    return BatchFeature(data=data, tensor_type=return_tensors)

# ============================================================================
# Definitions for SigLIP models. 
# ============================================================================

@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
class SiglipVisionModelOutput(ModelOutput):
    """
    Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.

    Args:
        image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    image_embeds: Optional[torch.FloatTensor] = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class SiglipVisionEmbeddings(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches
        self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
        self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, width, grid, grid]
        embeddings = patch_embeds.flatten(2).transpose(1, 2)

        embeddings = embeddings + self.position_embedding(self.position_ids)
        return embeddings



class SiglipAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        batch_size, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        k_v_seq_len = key_states.shape[-2]
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale

        if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights


# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
class SiglipMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
class SiglipEncoderLayer(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = SiglipAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    # Ignore copy
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`):
                Input to the layer of shape `(batch, seq_len, embed_dim)`.
            attention_mask (`torch.FloatTensor`):
                Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class SiglipPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = SiglipVisionConfig
    base_model_prefix = "siglip"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        pass

# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
class SiglipEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`SiglipEncoderLayer`].

    Args:
        config: SiglipVisionConfig
    """

    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    # Ignore copy
    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for encoder_layer in self.layers:
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class SiglipVisionTransformer(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipVisionEmbeddings(config)
        self.encoder = SiglipEncoder(config)
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
        self.head = SiglipMultiheadAttentionPoolingHead(config)

    def forward(
        self,
        pixel_values,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.post_layernorm(last_hidden_state)

        pooled_output = self.head(last_hidden_state)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class SiglipMultiheadAttentionPoolingHead(nn.Module):
    """Multihead Attention Pooling."""

    def __init__(self, config: SiglipVisionConfig):
        super().__init__()

        self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(config)

    def forward(self, hidden_state):
        batch_size = hidden_state.shape[0]
        probe = self.probe.repeat(batch_size, 1, 1)

        hidden_state = self.attention(probe, hidden_state, hidden_state)[0]

        residual = hidden_state
        hidden_state = self.layernorm(hidden_state)
        hidden_state = residual + self.mlp(hidden_state)

        return hidden_state[:, 0]


class SiglipVisionModel(SiglipPreTrainedModel):
    config_class = SiglipVisionConfig
    main_input_name = "pixel_values"

    def __init__(self, config: SiglipVisionConfig):
        super().__init__(config)

        self.vision_model = SiglipVisionTransformer(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    def forward(
        self,
        pixel_values,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, SiglipVisionModel

        >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
        >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled features
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        return self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


# ============================================================================
# VisionTower module for Imp
# ============================================================================

class VisionTower(nn.Module):
    def __init__(self, vision_tower_cfg, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.config = vision_tower_cfg
        self.vision_tower_name = vision_tower_cfg.mm_vision_tower
        self.select_layer = vision_tower_cfg.mm_vision_select_layer
        # self.select_feature = getattr(vision_tower_cfg, 'mm_vision_select_feature', 'patch')

        self.image_processor = simple_image_processor

        if not delay_load:
            self.load_model()
        else:
            raise NotImplementedError("delay load is not implemented yet.")

    def load_model(self):
        if self.is_loaded:
            return

        # "google/siglip-so400m-patch14-384"
        # self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
        self.vision_tower = SiglipVisionModel(self.config)
        del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
        self.vision_tower.vision_model.head = nn.Identity()
        self.vision_tower.requires_grad_(False)
        self.vision_tower.eval()

        self.is_loaded = True

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = image_forward_out.hidden_states[-1].to(image.dtype)
                assert image_features.shape[-2] == 729
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = image_forward_outs.hidden_states[-1].to(images.dtype)
            assert image_features.shape[-2] == 729

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        for p in self.vision_tower.parameters():
            return p.dtype

    @property
    def device(self):
        for p in self.vision_tower.parameters():
            return p.device

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2