Usage

Get the latest codebase from Github

git clone https://github.com/X-PLUG/mPLUG-Owl.git

Model initialization

from mplug_owl.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl.tokenization_mplug_owl import MplugOwlTokenizer
from mplug_owl.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor

pretrained_ckpt = 'MAGAer13/mplug-owl-llama-7b'
model = MplugOwlForConditionalGeneration.from_pretrained(
    pretrained_ckpt,
    torch_dtype=torch.bfloat16,
)
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
tokenizer = MplugOwlTokenizer.from_pretrained(pretrained_ckpt)
processor = MplugOwlProcessor(image_processor, tokenizer)

Model inference

Prepare model inputs.

# We use a human/AI template to organize the context as a multi-turn conversation.
# <image> denotes an image placehold.
prompts = [
'''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <image>
Human: Explain why this meme is funny.
AI: ''']

# The image paths should be placed in the image_list and kept in the same order as in the prompts.
# We support urls, local file paths and base64 string. You can custom the pre-process of images by modifying the mplug_owl.modeling_mplug_owl.ImageProcessor
image_list = ['https://xxx.com/image.jpg']

Get response.

# generate kwargs (the same in transformers) can be passed in the do_generate()
generate_kwargs = {
    'do_sample': True,
    'top_k': 5,
    'max_length': 512
}
from PIL import Image
images = [Image.open(_) for _ in image_list]
inputs = processor(text=prompts, images=images, return_tensors='pt')
inputs = {k: v.bfloat16() if v.dtype == torch.float else v for k, v in inputs.items()}
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
    res = model.generate(**inputs, **generate_kwargs)
sentence = tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
print(sentence)
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.