bertimbau-base-lener_br

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2298
  • Precision: 0.8501
  • Recall: 0.9138
  • F1: 0.8808
  • Accuracy: 0.9693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0686 1.0 1957 0.1399 0.7759 0.8669 0.8189 0.9641
0.0437 2.0 3914 0.1457 0.7997 0.8938 0.8441 0.9623
0.0313 3.0 5871 0.1675 0.8466 0.8744 0.8603 0.9651
0.0201 4.0 7828 0.1621 0.8713 0.8839 0.8775 0.9718
0.0137 5.0 9785 0.1811 0.7783 0.9159 0.8415 0.9645
0.0105 6.0 11742 0.1836 0.8568 0.9009 0.8783 0.9692
0.0105 7.0 13699 0.1649 0.8339 0.9125 0.8714 0.9725
0.0059 8.0 15656 0.2298 0.8501 0.9138 0.8808 0.9693
0.0051 9.0 17613 0.2210 0.8437 0.9045 0.8731 0.9693
0.0061 10.0 19570 0.2499 0.8627 0.8946 0.8784 0.9681
0.0041 11.0 21527 0.1985 0.8560 0.9052 0.8799 0.9720
0.003 12.0 23484 0.2204 0.8498 0.9065 0.8772 0.9699
0.0014 13.0 25441 0.2152 0.8425 0.9067 0.8734 0.9709
0.0005 14.0 27398 0.2317 0.8553 0.8987 0.8765 0.9705
0.0015 15.0 29355 0.2436 0.8543 0.8989 0.8760 0.9700

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.9.0
  • Tokenizers 0.10.3
New

Select AutoNLP in the “Train” menu to fine-tune this model automatically.

Downloads last month
83
Hosted inference API
Token Classification
This model can be loaded on the Inference API on-demand.