Edit model card

bertimbau-base-lener_br

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2298
  • Precision: 0.8501
  • Recall: 0.9138
  • F1: 0.8808
  • Accuracy: 0.9693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0686 1.0 1957 0.1399 0.7759 0.8669 0.8189 0.9641
0.0437 2.0 3914 0.1457 0.7997 0.8938 0.8441 0.9623
0.0313 3.0 5871 0.1675 0.8466 0.8744 0.8603 0.9651
0.0201 4.0 7828 0.1621 0.8713 0.8839 0.8775 0.9718
0.0137 5.0 9785 0.1811 0.7783 0.9159 0.8415 0.9645
0.0105 6.0 11742 0.1836 0.8568 0.9009 0.8783 0.9692
0.0105 7.0 13699 0.1649 0.8339 0.9125 0.8714 0.9725
0.0059 8.0 15656 0.2298 0.8501 0.9138 0.8808 0.9693
0.0051 9.0 17613 0.2210 0.8437 0.9045 0.8731 0.9693
0.0061 10.0 19570 0.2499 0.8627 0.8946 0.8784 0.9681
0.0041 11.0 21527 0.1985 0.8560 0.9052 0.8799 0.9720
0.003 12.0 23484 0.2204 0.8498 0.9065 0.8772 0.9699
0.0014 13.0 25441 0.2152 0.8425 0.9067 0.8734 0.9709
0.0005 14.0 27398 0.2317 0.8553 0.8987 0.8765 0.9705
0.0015 15.0 29355 0.2436 0.8543 0.8989 0.8760 0.9700

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.9.0
  • Tokenizers 0.10.3
Downloads last month
92
Hosted inference API
This model can be loaded on the Inference API on-demand.

Dataset used to train Luciano/bertimbau-base-lener_br

Evaluation results