SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-long
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-long on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m-long
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/arctic-m-long-q-oai-v3")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 4.000000000000001e-06max_steps
: 9291warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4.000000000000001e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: 9291lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 10 | 0.0927 | - |
0.0022 | 20 | 0.099 | - |
0.0032 | 30 | 0.0915 | - |
0.0043 | 40 | 0.0956 | - |
0.0054 | 50 | 0.0892 | - |
0.0065 | 60 | 0.066 | - |
0.0075 | 70 | 0.1027 | - |
0.0086 | 80 | 0.0994 | - |
0.0097 | 90 | 0.0811 | - |
0.0108 | 100 | 0.0724 | - |
0.0118 | 110 | 0.0845 | - |
0.0129 | 120 | 0.0611 | - |
0.0140 | 130 | 0.0732 | - |
0.0151 | 140 | 0.0682 | - |
0.0161 | 150 | 0.0823 | 0.0858 |
0.0172 | 160 | 0.0643 | - |
0.0183 | 170 | 0.0826 | - |
0.0194 | 180 | 0.091 | - |
0.0204 | 190 | 0.0737 | - |
0.0215 | 200 | 0.0724 | - |
0.0226 | 210 | 0.0787 | - |
0.0237 | 220 | 0.0831 | - |
0.0248 | 230 | 0.0708 | - |
0.0258 | 240 | 0.0755 | - |
0.0269 | 250 | 0.0889 | - |
0.0280 | 260 | 0.0788 | - |
0.0291 | 270 | 0.0833 | - |
0.0301 | 280 | 0.0707 | - |
0.0312 | 290 | 0.0624 | - |
0.0323 | 300 | 0.0614 | 0.0837 |
0.0334 | 310 | 0.0738 | - |
0.0344 | 320 | 0.0616 | - |
0.0355 | 330 | 0.0664 | - |
0.0366 | 340 | 0.0706 | - |
0.0377 | 350 | 0.0634 | - |
0.0387 | 360 | 0.0822 | - |
0.0398 | 370 | 0.0722 | - |
0.0409 | 380 | 0.0687 | - |
0.0420 | 390 | 0.0597 | - |
0.0431 | 400 | 0.0594 | - |
0.0441 | 410 | 0.0698 | - |
0.0452 | 420 | 0.0665 | - |
0.0463 | 430 | 0.0815 | - |
0.0474 | 440 | 0.0655 | - |
0.0484 | 450 | 0.0762 | 0.0792 |
0.0495 | 460 | 0.0638 | - |
0.0506 | 470 | 0.0499 | - |
0.0517 | 480 | 0.0693 | - |
0.0527 | 490 | 0.0576 | - |
0.0538 | 500 | 0.0686 | - |
0.0549 | 510 | 0.0625 | - |
0.0560 | 520 | 0.0655 | - |
0.0570 | 530 | 0.0619 | - |
0.0581 | 540 | 0.0594 | - |
0.0592 | 550 | 0.0699 | - |
0.0603 | 560 | 0.0737 | - |
0.0613 | 570 | 0.0627 | - |
0.0624 | 580 | 0.0604 | - |
0.0635 | 590 | 0.0659 | - |
0.0646 | 600 | 0.0819 | 0.0706 |
0.0657 | 610 | 0.0683 | - |
0.0667 | 620 | 0.0567 | - |
0.0678 | 630 | 0.0655 | - |
0.0689 | 640 | 0.0672 | - |
0.0700 | 650 | 0.0586 | - |
0.0710 | 660 | 0.0682 | - |
0.0721 | 670 | 0.0587 | - |
0.0732 | 680 | 0.078 | - |
0.0743 | 690 | 0.0658 | - |
0.0753 | 700 | 0.0612 | - |
0.0764 | 710 | 0.0617 | - |
0.0775 | 720 | 0.0659 | - |
0.0786 | 730 | 0.0596 | - |
0.0796 | 740 | 0.0664 | - |
0.0807 | 750 | 0.056 | 0.0772 |
0.0818 | 760 | 0.062 | - |
0.0829 | 770 | 0.0706 | - |
0.0840 | 780 | 0.0522 | - |
0.0850 | 790 | 0.061 | - |
0.0861 | 800 | 0.0635 | - |
0.0872 | 810 | 0.0579 | - |
0.0883 | 820 | 0.0595 | - |
0.0893 | 830 | 0.0581 | - |
0.0904 | 840 | 0.0606 | - |
0.0915 | 850 | 0.0599 | - |
0.0926 | 860 | 0.0848 | - |
0.0936 | 870 | 0.0899 | - |
0.0947 | 880 | 0.0631 | - |
0.0958 | 890 | 0.0466 | - |
0.0969 | 900 | 0.0419 | 0.0838 |
0.0979 | 910 | 0.0435 | - |
0.0990 | 920 | 0.0481 | - |
0.1001 | 930 | 0.0498 | - |
0.1012 | 940 | 0.0391 | - |
0.1022 | 950 | 0.037 | - |
0.1033 | 960 | 0.0413 | - |
0.1044 | 970 | 0.0404 | - |
0.1055 | 980 | 0.0414 | - |
0.1066 | 990 | 0.0453 | - |
0.1076 | 1000 | 0.0347 | - |
0.1087 | 1010 | 0.0348 | - |
0.1098 | 1020 | 0.0274 | - |
0.1109 | 1030 | 0.04 | - |
0.1119 | 1040 | 0.0437 | - |
0.1130 | 1050 | 0.042 | 0.0736 |
0.1141 | 1060 | 0.0353 | - |
0.1152 | 1070 | 0.0589 | - |
0.1162 | 1080 | 0.061 | - |
0.1173 | 1090 | 0.0647 | - |
0.1184 | 1100 | 0.0607 | - |
0.1195 | 1110 | 0.0674 | - |
0.1205 | 1120 | 0.0539 | - |
0.1216 | 1130 | 0.0591 | - |
0.1227 | 1140 | 0.06 | - |
0.1238 | 1150 | 0.0479 | - |
0.1249 | 1160 | 0.0526 | - |
0.1259 | 1170 | 0.0575 | - |
0.1270 | 1180 | 0.0502 | - |
0.1281 | 1190 | 0.0491 | - |
0.1292 | 1200 | 0.053 | 0.0568 |
0.1302 | 1210 | 0.0448 | - |
0.1313 | 1220 | 0.0435 | - |
0.1324 | 1230 | 0.0593 | - |
0.1335 | 1240 | 0.0423 | - |
0.1345 | 1250 | 0.0536 | - |
0.1356 | 1260 | 0.0388 | - |
0.1367 | 1270 | 0.0486 | - |
0.1378 | 1280 | 0.041 | - |
0.1388 | 1290 | 0.0465 | - |
0.1399 | 1300 | 0.0617 | - |
0.1410 | 1310 | 0.0499 | - |
0.1421 | 1320 | 0.0494 | - |
0.1431 | 1330 | 0.0446 | - |
0.1442 | 1340 | 0.045 | - |
0.1453 | 1350 | 0.0453 | 0.0516 |
0.1464 | 1360 | 0.0458 | - |
0.1475 | 1370 | 0.0359 | - |
0.1485 | 1380 | 0.0348 | - |
0.1496 | 1390 | 0.0464 | - |
0.1507 | 1400 | 0.042 | - |
0.1518 | 1410 | 0.0397 | - |
0.1528 | 1420 | 0.0415 | - |
0.1539 | 1430 | 0.0521 | - |
0.1550 | 1440 | 0.0394 | - |
0.1561 | 1450 | 0.0463 | - |
0.1571 | 1460 | 0.0426 | - |
0.1582 | 1470 | 0.0437 | - |
0.1593 | 1480 | 0.0524 | - |
0.1604 | 1490 | 0.0443 | - |
0.1614 | 1500 | 0.0448 | 0.0508 |
0.1625 | 1510 | 0.0487 | - |
0.1636 | 1520 | 0.0341 | - |
0.1647 | 1530 | 0.0345 | - |
0.1658 | 1540 | 0.0283 | - |
0.1668 | 1550 | 0.0342 | - |
0.1679 | 1560 | 0.0452 | - |
0.1690 | 1570 | 0.0355 | - |
0.1701 | 1580 | 0.035 | - |
0.1711 | 1590 | 0.0394 | - |
0.1722 | 1600 | 0.0353 | - |
0.1733 | 1610 | 0.0265 | - |
0.1744 | 1620 | 0.0316 | - |
0.1754 | 1630 | 0.0357 | - |
0.1765 | 1640 | 0.0445 | - |
0.1776 | 1650 | 0.035 | 0.0459 |
0.1787 | 1660 | 0.0421 | - |
0.1797 | 1670 | 0.0331 | - |
0.1808 | 1680 | 0.0296 | - |
0.1819 | 1690 | 0.0393 | - |
0.1830 | 1700 | 0.0294 | - |
0.1840 | 1710 | 0.039 | - |
0.1851 | 1720 | 0.031 | - |
0.1862 | 1730 | 0.0335 | - |
0.1873 | 1740 | 0.0331 | - |
0.1884 | 1750 | 0.0299 | - |
0.1894 | 1760 | 0.0258 | - |
0.1905 | 1770 | 0.0332 | - |
0.1916 | 1780 | 0.0292 | - |
0.1927 | 1790 | 0.0252 | - |
0.1937 | 1800 | 0.0322 | 0.0485 |
0.1948 | 1810 | 0.0315 | - |
0.1959 | 1820 | 0.0284 | - |
0.1970 | 1830 | 0.0211 | - |
0.1980 | 1840 | 0.0322 | - |
0.1991 | 1850 | 0.0289 | - |
0.2002 | 1860 | 0.0299 | - |
0.2013 | 1870 | 0.0325 | - |
0.2023 | 1880 | 0.0226 | - |
0.2034 | 1890 | 0.0228 | - |
0.2045 | 1900 | 0.0254 | - |
0.2056 | 1910 | 0.0265 | - |
0.2067 | 1920 | 0.0223 | - |
0.2077 | 1930 | 0.0298 | - |
0.2088 | 1940 | 0.0257 | - |
0.2099 | 1950 | 0.0266 | 0.0507 |
0.2110 | 1960 | 0.0274 | - |
0.2120 | 1970 | 0.0236 | - |
0.2131 | 1980 | 0.0192 | - |
0.2142 | 1990 | 0.0244 | - |
0.2153 | 2000 | 0.0283 | - |
0.2163 | 2010 | 0.0226 | - |
0.2174 | 2020 | 0.0254 | - |
0.2185 | 2030 | 0.0219 | - |
0.2196 | 2040 | 0.0264 | - |
0.2206 | 2050 | 0.0238 | - |
0.2217 | 2060 | 0.0249 | - |
0.2228 | 2070 | 0.022 | - |
0.2239 | 2080 | 0.0222 | - |
0.2249 | 2090 | 0.0238 | - |
0.2260 | 2100 | 0.0256 | 0.0514 |
0.2271 | 2110 | 0.0279 | - |
0.2282 | 2120 | 0.0197 | - |
0.2293 | 2130 | 0.0249 | - |
0.2303 | 2140 | 0.0264 | - |
0.2314 | 2150 | 0.0226 | - |
0.2325 | 2160 | 0.0292 | - |
0.2336 | 2170 | 0.028 | - |
0.2346 | 2180 | 0.0199 | - |
0.2357 | 2190 | 0.0273 | - |
0.2368 | 2200 | 0.0267 | - |
0.2379 | 2210 | 0.0287 | - |
0.2389 | 2220 | 0.0221 | - |
0.2400 | 2230 | 0.0185 | - |
0.2411 | 2240 | 0.023 | - |
0.2422 | 2250 | 0.024 | 0.0519 |
0.2432 | 2260 | 0.0224 | - |
0.2443 | 2270 | 0.0249 | - |
0.2454 | 2280 | 0.0227 | - |
0.2465 | 2290 | 0.0144 | - |
0.2476 | 2300 | 0.021 | - |
0.2486 | 2310 | 0.0248 | - |
0.2497 | 2320 | 0.0206 | - |
0.2508 | 2330 | 0.0203 | - |
0.2519 | 2340 | 0.022 | - |
0.2529 | 2350 | 0.0229 | - |
0.2540 | 2360 | 0.0216 | - |
0.2551 | 2370 | 0.0304 | - |
0.2562 | 2380 | 0.0197 | - |
0.2572 | 2390 | 0.0206 | - |
0.2583 | 2400 | 0.025 | 0.0554 |
0.2594 | 2410 | 0.0224 | - |
0.2605 | 2420 | 0.0211 | - |
0.2615 | 2430 | 0.0173 | - |
0.2626 | 2440 | 0.0186 | - |
0.2637 | 2450 | 0.0233 | - |
0.2648 | 2460 | 0.0182 | - |
0.2658 | 2470 | 0.0215 | - |
0.2669 | 2480 | 0.0221 | - |
0.2680 | 2490 | 0.019 | - |
0.2691 | 2500 | 0.022 | - |
0.2702 | 2510 | 0.0209 | - |
0.2712 | 2520 | 0.0224 | - |
0.2723 | 2530 | 0.0208 | - |
0.2734 | 2540 | 0.0198 | - |
0.2745 | 2550 | 0.0273 | 0.0622 |
0.2755 | 2560 | 0.0238 | - |
0.2766 | 2570 | 0.0196 | - |
0.2777 | 2580 | 0.0213 | - |
0.2788 | 2590 | 0.0231 | - |
0.2798 | 2600 | 0.0236 | - |
0.2809 | 2610 | 0.0211 | - |
0.2820 | 2620 | 0.0249 | - |
0.2831 | 2630 | 0.0191 | - |
0.2841 | 2640 | 0.0177 | - |
0.2852 | 2650 | 0.0182 | - |
0.2863 | 2660 | 0.0143 | - |
0.2874 | 2670 | 0.019 | - |
0.2885 | 2680 | 0.0182 | - |
0.2895 | 2690 | 0.0219 | - |
0.2906 | 2700 | 0.0209 | 0.0568 |
0.2917 | 2710 | 0.0219 | - |
0.2928 | 2720 | 0.0211 | - |
0.2938 | 2730 | 0.0182 | - |
0.2949 | 2740 | 0.0177 | - |
0.2960 | 2750 | 0.0246 | - |
0.2971 | 2760 | 0.0165 | - |
0.2981 | 2770 | 0.0216 | - |
0.2992 | 2780 | 0.0189 | - |
0.3003 | 2790 | 0.024 | - |
0.3014 | 2800 | 0.0215 | - |
0.3024 | 2810 | 0.0244 | - |
0.3035 | 2820 | 0.0179 | - |
0.3046 | 2830 | 0.018 | - |
0.3057 | 2840 | 0.0212 | - |
0.3067 | 2850 | 0.0223 | 0.0577 |
0.3078 | 2860 | 0.0258 | - |
0.3089 | 2870 | 0.0171 | - |
0.3100 | 2880 | 0.019 | - |
0.3111 | 2890 | 0.0206 | - |
0.3121 | 2900 | 0.0178 | - |
0.3132 | 2910 | 0.0172 | - |
0.3143 | 2920 | 0.0225 | - |
0.3154 | 2930 | 0.0433 | - |
0.3164 | 2940 | 0.0482 | - |
0.3175 | 2950 | 0.0475 | - |
0.3186 | 2960 | 0.0465 | - |
0.3197 | 2970 | 0.048 | - |
0.3207 | 2980 | 0.0322 | - |
0.3218 | 2990 | 0.0272 | - |
0.3229 | 3000 | 0.0232 | 0.0499 |
0.3240 | 3010 | 0.025 | - |
0.3250 | 3020 | 0.0196 | - |
0.3261 | 3030 | 0.0192 | - |
0.3272 | 3040 | 0.0177 | - |
0.3283 | 3050 | 0.0219 | - |
0.3294 | 3060 | 0.0178 | - |
0.3304 | 3070 | 0.0152 | - |
0.3315 | 3080 | 0.0187 | - |
0.3326 | 3090 | 0.0189 | - |
1.0002 | 3100 | 0.0315 | - |
1.0013 | 3110 | 0.0717 | - |
1.0024 | 3120 | 0.07 | - |
1.0034 | 3130 | 0.0613 | - |
1.0045 | 3140 | 0.0771 | - |
1.0056 | 3150 | 0.0593 | 0.0542 |
1.0067 | 3160 | 0.0671 | - |
1.0077 | 3170 | 0.0655 | - |
1.0088 | 3180 | 0.0578 | - |
1.0099 | 3190 | 0.0561 | - |
1.0110 | 3200 | 0.0577 | - |
1.0121 | 3210 | 0.0641 | - |
1.0131 | 3220 | 0.0506 | - |
1.0142 | 3230 | 0.0528 | - |
1.0153 | 3240 | 0.0477 | - |
1.0164 | 3250 | 0.052 | - |
1.0174 | 3260 | 0.0579 | - |
1.0185 | 3270 | 0.054 | - |
1.0196 | 3280 | 0.0592 | - |
1.0207 | 3290 | 0.0529 | - |
1.0217 | 3300 | 0.0556 | 0.0572 |
1.0228 | 3310 | 0.064 | - |
1.0239 | 3320 | 0.0564 | - |
1.0250 | 3330 | 0.0597 | - |
1.0260 | 3340 | 0.0568 | - |
1.0271 | 3350 | 0.0531 | - |
1.0282 | 3360 | 0.0517 | - |
1.0293 | 3370 | 0.0515 | - |
1.0304 | 3380 | 0.0552 | - |
1.0314 | 3390 | 0.0529 | - |
1.0325 | 3400 | 0.0448 | - |
1.0336 | 3410 | 0.0485 | - |
1.0347 | 3420 | 0.044 | - |
1.0357 | 3430 | 0.0474 | - |
1.0368 | 3440 | 0.0536 | - |
1.0379 | 3450 | 0.0487 | 0.0620 |
1.0390 | 3460 | 0.0611 | - |
1.0400 | 3470 | 0.0505 | - |
1.0411 | 3480 | 0.0474 | - |
1.0422 | 3490 | 0.0434 | - |
1.0433 | 3500 | 0.0448 | - |
1.0443 | 3510 | 0.0451 | - |
1.0454 | 3520 | 0.0485 | - |
1.0465 | 3530 | 0.0546 | - |
1.0476 | 3540 | 0.0467 | - |
1.0486 | 3550 | 0.0465 | - |
1.0497 | 3560 | 0.0489 | - |
1.0508 | 3570 | 0.0463 | - |
1.0519 | 3580 | 0.0501 | - |
1.0530 | 3590 | 0.0413 | - |
1.0540 | 3600 | 0.044 | 0.0538 |
1.0551 | 3610 | 0.0519 | - |
1.0562 | 3620 | 0.0381 | - |
1.0573 | 3630 | 0.0445 | - |
1.0583 | 3640 | 0.0407 | - |
1.0594 | 3650 | 0.0483 | - |
1.0605 | 3660 | 0.0613 | - |
1.0616 | 3670 | 0.0483 | - |
1.0626 | 3680 | 0.0407 | - |
1.0637 | 3690 | 0.0519 | - |
1.0648 | 3700 | 0.0489 | - |
1.0659 | 3710 | 0.0469 | - |
1.0669 | 3720 | 0.047 | - |
1.0680 | 3730 | 0.0568 | - |
1.0691 | 3740 | 0.0492 | - |
1.0702 | 3750 | 0.0391 | 0.0546 |
1.0713 | 3760 | 0.0495 | - |
1.0723 | 3770 | 0.0628 | - |
1.0734 | 3780 | 0.0444 | - |
1.0745 | 3790 | 0.0443 | - |
1.0756 | 3800 | 0.0466 | - |
1.0766 | 3810 | 0.0542 | - |
1.0777 | 3820 | 0.0485 | - |
1.0788 | 3830 | 0.0529 | - |
1.0799 | 3840 | 0.0401 | - |
1.0809 | 3850 | 0.0407 | - |
1.0820 | 3860 | 0.0515 | - |
1.0831 | 3870 | 0.0497 | - |
1.0842 | 3880 | 0.0425 | - |
1.0852 | 3890 | 0.0429 | - |
1.0863 | 3900 | 0.0523 | 0.0563 |
1.0874 | 3910 | 0.0456 | - |
1.0885 | 3920 | 0.0469 | - |
1.0895 | 3930 | 0.0395 | - |
1.0906 | 3940 | 0.0495 | - |
1.0917 | 3950 | 0.0626 | - |
1.0928 | 3960 | 0.0406 | - |
1.0939 | 3970 | 0.0397 | - |
1.0949 | 3980 | 0.0269 | - |
1.0960 | 3990 | 0.0241 | - |
1.0971 | 4000 | 0.0336 | - |
1.0982 | 4010 | 0.0256 | - |
1.0992 | 4020 | 0.0317 | - |
1.1003 | 4030 | 0.0315 | - |
1.1014 | 4040 | 0.025 | - |
1.1025 | 4050 | 0.0222 | 0.0463 |
1.1035 | 4060 | 0.0245 | - |
1.1046 | 4070 | 0.0321 | - |
1.1057 | 4080 | 0.0256 | - |
1.1068 | 4090 | 0.028 | - |
1.1078 | 4100 | 0.0195 | - |
1.1089 | 4110 | 0.0207 | - |
1.1100 | 4120 | 0.0232 | - |
1.1111 | 4130 | 0.0266 | - |
1.1122 | 4140 | 0.0271 | - |
1.1132 | 4150 | 0.0309 | - |
1.1143 | 4160 | 0.0275 | - |
1.1154 | 4170 | 0.0252 | - |
1.1165 | 4180 | 0.0431 | - |
1.1175 | 4190 | 0.0397 | - |
1.1186 | 4200 | 0.0415 | 0.0479 |
1.1197 | 4210 | 0.0391 | - |
1.1208 | 4220 | 0.0385 | - |
1.1218 | 4230 | 0.0357 | - |
1.1229 | 4240 | 0.0335 | - |
1.1240 | 4250 | 0.0329 | - |
1.1251 | 4260 | 0.0349 | - |
1.1261 | 4270 | 0.0355 | - |
1.1272 | 4280 | 0.0334 | - |
1.1283 | 4290 | 0.0335 | - |
1.1294 | 4300 | 0.0277 | - |
1.1304 | 4310 | 0.0433 | - |
1.1315 | 4320 | 0.0369 | - |
1.1326 | 4330 | 0.0306 | - |
1.1337 | 4340 | 0.0393 | - |
1.1348 | 4350 | 0.0277 | 0.0457 |
1.1358 | 4360 | 0.0358 | - |
1.1369 | 4370 | 0.0256 | - |
1.1380 | 4380 | 0.0441 | - |
1.1391 | 4390 | 0.0303 | - |
1.1401 | 4400 | 0.0348 | - |
1.1412 | 4410 | 0.0345 | - |
1.1423 | 4420 | 0.0438 | - |
1.1434 | 4430 | 0.0352 | - |
1.1444 | 4440 | 0.0304 | - |
1.1455 | 4450 | 0.0334 | - |
1.1466 | 4460 | 0.0309 | - |
1.1477 | 4470 | 0.0282 | - |
1.1487 | 4480 | 0.025 | - |
1.1498 | 4490 | 0.0314 | - |
1.1509 | 4500 | 0.0286 | 0.0451 |
1.1520 | 4510 | 0.0401 | - |
1.1531 | 4520 | 0.0284 | - |
1.1541 | 4530 | 0.0377 | - |
1.1552 | 4540 | 0.0289 | - |
1.1563 | 4550 | 0.0381 | - |
1.1574 | 4560 | 0.0331 | - |
1.1584 | 4570 | 0.0334 | - |
1.1595 | 4580 | 0.0409 | - |
1.1606 | 4590 | 0.0323 | - |
1.1617 | 4600 | 0.0373 | - |
1.1627 | 4610 | 0.0316 | - |
1.1638 | 4620 | 0.026 | - |
1.1649 | 4630 | 0.0268 | - |
1.1660 | 4640 | 0.0272 | - |
1.1670 | 4650 | 0.03 | 0.0447 |
1.1681 | 4660 | 0.0287 | - |
1.1692 | 4670 | 0.0314 | - |
1.1703 | 4680 | 0.0236 | - |
1.1713 | 4690 | 0.0247 | - |
1.1724 | 4700 | 0.0213 | - |
1.1735 | 4710 | 0.0206 | - |
1.1746 | 4720 | 0.0218 | - |
1.1757 | 4730 | 0.0236 | - |
1.1767 | 4740 | 0.024 | - |
1.1778 | 4750 | 0.0203 | - |
1.1789 | 4760 | 0.0264 | - |
1.1800 | 4770 | 0.0188 | - |
1.1810 | 4780 | 0.0244 | - |
1.1821 | 4790 | 0.0179 | - |
1.1832 | 4800 | 0.0197 | 0.0449 |
1.1843 | 4810 | 0.0142 | - |
1.1853 | 4820 | 0.0202 | - |
1.1864 | 4830 | 0.0222 | - |
1.1875 | 4840 | 0.0148 | - |
1.1886 | 4850 | 0.0223 | - |
1.1896 | 4860 | 0.0173 | - |
1.1907 | 4870 | 0.0162 | - |
1.1918 | 4880 | 0.0173 | - |
1.1929 | 4890 | 0.0192 | - |
1.1940 | 4900 | 0.0187 | - |
1.1950 | 4910 | 0.0175 | - |
1.1961 | 4920 | 0.0157 | - |
1.1972 | 4930 | 0.0185 | - |
1.1983 | 4940 | 0.0207 | - |
1.1993 | 4950 | 0.0205 | 0.0488 |
1.2004 | 4960 | 0.0165 | - |
1.2015 | 4970 | 0.0198 | - |
1.2026 | 4980 | 0.018 | - |
1.2036 | 4990 | 0.0178 | - |
1.2047 | 5000 | 0.0153 | - |
1.2058 | 5010 | 0.017 | - |
1.2069 | 5020 | 0.0178 | - |
1.2079 | 5030 | 0.0181 | - |
1.2090 | 5040 | 0.015 | - |
1.2101 | 5050 | 0.0193 | - |
1.2112 | 5060 | 0.0213 | - |
1.2122 | 5070 | 0.0135 | - |
1.2133 | 5080 | 0.0158 | - |
1.2144 | 5090 | 0.0188 | - |
1.2155 | 5100 | 0.018 | 0.0507 |
1.2166 | 5110 | 0.0155 | - |
1.2176 | 5120 | 0.013 | - |
1.2187 | 5130 | 0.0209 | - |
1.2198 | 5140 | 0.0177 | - |
1.2209 | 5150 | 0.0184 | - |
1.2219 | 5160 | 0.0144 | - |
1.2230 | 5170 | 0.0164 | - |
1.2241 | 5180 | 0.0165 | - |
1.2252 | 5190 | 0.0168 | - |
1.2262 | 5200 | 0.0186 | - |
1.2273 | 5210 | 0.0166 | - |
1.2284 | 5220 | 0.0165 | - |
1.2295 | 5230 | 0.0165 | - |
1.2305 | 5240 | 0.0179 | - |
1.2316 | 5250 | 0.0184 | 0.0498 |
1.2327 | 5260 | 0.0148 | - |
1.2338 | 5270 | 0.021 | - |
1.2349 | 5280 | 0.0173 | - |
1.2359 | 5290 | 0.0199 | - |
1.2370 | 5300 | 0.0204 | - |
1.2381 | 5310 | 0.0202 | - |
1.2392 | 5320 | 0.0138 | - |
1.2402 | 5330 | 0.017 | - |
1.2413 | 5340 | 0.0156 | - |
1.2424 | 5350 | 0.0173 | - |
1.2435 | 5360 | 0.0163 | - |
1.2445 | 5370 | 0.0175 | - |
1.2456 | 5380 | 0.0165 | - |
1.2467 | 5390 | 0.0132 | - |
1.2478 | 5400 | 0.0179 | 0.0573 |
1.2488 | 5410 | 0.0149 | - |
1.2499 | 5420 | 0.0171 | - |
1.2510 | 5430 | 0.0188 | - |
1.2521 | 5440 | 0.0146 | - |
1.2531 | 5450 | 0.0152 | - |
1.2542 | 5460 | 0.0171 | - |
1.2553 | 5470 | 0.0198 | - |
1.2564 | 5480 | 0.0162 | - |
1.2575 | 5490 | 0.0173 | - |
1.2585 | 5500 | 0.019 | - |
1.2596 | 5510 | 0.0136 | - |
1.2607 | 5520 | 0.0173 | - |
1.2618 | 5530 | 0.015 | - |
1.2628 | 5540 | 0.0121 | - |
1.2639 | 5550 | 0.0166 | 0.0564 |
1.2650 | 5560 | 0.0156 | - |
1.2661 | 5570 | 0.0164 | - |
1.2671 | 5580 | 0.017 | - |
1.2682 | 5590 | 0.0134 | - |
1.2693 | 5600 | 0.0175 | - |
1.2704 | 5610 | 0.0154 | - |
1.2714 | 5620 | 0.0203 | - |
1.2725 | 5630 | 0.011 | - |
1.2736 | 5640 | 0.0142 | - |
1.2747 | 5650 | 0.0204 | - |
1.2758 | 5660 | 0.0167 | - |
1.2768 | 5670 | 0.0173 | - |
1.2779 | 5680 | 0.0149 | - |
1.2790 | 5690 | 0.0182 | - |
1.2801 | 5700 | 0.0172 | 0.0537 |
1.2811 | 5710 | 0.02 | - |
1.2822 | 5720 | 0.0168 | - |
1.2833 | 5730 | 0.016 | - |
1.2844 | 5740 | 0.0148 | - |
1.2854 | 5750 | 0.0145 | - |
1.2865 | 5760 | 0.0142 | - |
1.2876 | 5770 | 0.0126 | - |
1.2887 | 5780 | 0.0155 | - |
1.2897 | 5790 | 0.0161 | - |
1.2908 | 5800 | 0.0152 | - |
1.2919 | 5810 | 0.0152 | - |
1.2930 | 5820 | 0.0125 | - |
1.2940 | 5830 | 0.0187 | - |
1.2951 | 5840 | 0.0153 | - |
1.2962 | 5850 | 0.021 | 0.0545 |
1.2973 | 5860 | 0.0134 | - |
1.2984 | 5870 | 0.0181 | - |
1.2994 | 5880 | 0.0208 | - |
1.3005 | 5890 | 0.0134 | - |
1.3016 | 5900 | 0.0158 | - |
1.3027 | 5910 | 0.0186 | - |
1.3037 | 5920 | 0.0182 | - |
1.3048 | 5930 | 0.0149 | - |
1.3059 | 5940 | 0.0147 | - |
1.3070 | 5950 | 0.0159 | - |
1.3080 | 5960 | 0.0174 | - |
1.3091 | 5970 | 0.0162 | - |
1.3102 | 5980 | 0.0153 | - |
1.3113 | 5990 | 0.0154 | - |
1.3123 | 6000 | 0.0145 | 0.0574 |
1.3134 | 6010 | 0.017 | - |
1.3145 | 6020 | 0.0161 | - |
1.3156 | 6030 | 0.0328 | - |
1.3167 | 6040 | 0.0384 | - |
1.3177 | 6050 | 0.0362 | - |
1.3188 | 6060 | 0.0291 | - |
1.3199 | 6070 | 0.0332 | - |
1.3210 | 6080 | 0.0287 | - |
1.3220 | 6090 | 0.0198 | - |
1.3231 | 6100 | 0.0189 | - |
1.3242 | 6110 | 0.0216 | - |
1.3253 | 6120 | 0.0123 | - |
1.3263 | 6130 | 0.0162 | - |
1.3274 | 6140 | 0.0167 | - |
1.3285 | 6150 | 0.014 | 0.0491 |
1.3296 | 6160 | 0.0193 | - |
1.3306 | 6170 | 0.0127 | - |
1.3317 | 6180 | 0.0171 | - |
1.3328 | 6190 | 0.0125 | - |
2.0004 | 6200 | 0.0305 | - |
2.0015 | 6210 | 0.0519 | - |
2.0026 | 6220 | 0.047 | - |
2.0037 | 6230 | 0.0588 | - |
2.0047 | 6240 | 0.0486 | - |
2.0058 | 6250 | 0.0468 | - |
2.0069 | 6260 | 0.0447 | - |
2.0080 | 6270 | 0.0506 | - |
2.0090 | 6280 | 0.0509 | - |
2.0101 | 6290 | 0.0467 | - |
2.0112 | 6300 | 0.0421 | 0.0503 |
2.0123 | 6310 | 0.0427 | - |
2.0133 | 6320 | 0.05 | - |
2.0144 | 6330 | 0.0352 | - |
2.0155 | 6340 | 0.0381 | - |
2.0166 | 6350 | 0.0456 | - |
2.0177 | 6360 | 0.044 | - |
2.0187 | 6370 | 0.0488 | - |
2.0198 | 6380 | 0.0436 | - |
2.0209 | 6390 | 0.0361 | - |
2.0220 | 6400 | 0.0548 | - |
2.0230 | 6410 | 0.0551 | - |
2.0241 | 6420 | 0.0467 | - |
2.0252 | 6430 | 0.0448 | - |
2.0263 | 6440 | 0.0422 | - |
2.0273 | 6450 | 0.0406 | 0.0497 |
2.0284 | 6460 | 0.038 | - |
2.0295 | 6470 | 0.0517 | - |
2.0306 | 6480 | 0.0415 | - |
2.0316 | 6490 | 0.0372 | - |
2.0327 | 6500 | 0.0432 | - |
2.0338 | 6510 | 0.0425 | - |
2.0349 | 6520 | 0.033 | - |
2.0359 | 6530 | 0.0456 | - |
2.0370 | 6540 | 0.0334 | - |
2.0381 | 6550 | 0.0464 | - |
2.0392 | 6560 | 0.0559 | - |
2.0403 | 6570 | 0.0392 | - |
2.0413 | 6580 | 0.041 | - |
2.0424 | 6590 | 0.0413 | - |
2.0435 | 6600 | 0.0354 | 0.0508 |
2.0446 | 6610 | 0.0439 | - |
2.0456 | 6620 | 0.0385 | - |
2.0467 | 6630 | 0.0366 | - |
2.0478 | 6640 | 0.0381 | - |
2.0489 | 6650 | 0.0444 | - |
2.0499 | 6660 | 0.045 | - |
2.0510 | 6670 | 0.0364 | - |
2.0521 | 6680 | 0.0351 | - |
2.0532 | 6690 | 0.031 | - |
2.0542 | 6700 | 0.0454 | - |
2.0553 | 6710 | 0.0354 | - |
2.0564 | 6720 | 0.0355 | - |
2.0575 | 6730 | 0.0377 | - |
2.0586 | 6740 | 0.036 | - |
2.0596 | 6750 | 0.0407 | 0.0523 |
2.0607 | 6760 | 0.0555 | - |
2.0618 | 6770 | 0.0386 | - |
2.0629 | 6780 | 0.0401 | - |
2.0639 | 6790 | 0.0515 | - |
2.0650 | 6800 | 0.0379 | - |
2.0661 | 6810 | 0.0406 | - |
2.0672 | 6820 | 0.0384 | - |
2.0682 | 6830 | 0.0416 | - |
2.0693 | 6840 | 0.0368 | - |
2.0704 | 6850 | 0.0381 | - |
2.0715 | 6860 | 0.0541 | - |
2.0725 | 6870 | 0.0428 | - |
2.0736 | 6880 | 0.0452 | - |
2.0747 | 6890 | 0.0384 | - |
2.0758 | 6900 | 0.0387 | 0.0509 |
2.0768 | 6910 | 0.0398 | - |
2.0779 | 6920 | 0.0449 | - |
2.0790 | 6930 | 0.0418 | - |
2.0801 | 6940 | 0.0437 | - |
2.0812 | 6950 | 0.0349 | - |
2.0822 | 6960 | 0.0421 | - |
2.0833 | 6970 | 0.0353 | - |
2.0844 | 6980 | 0.0373 | - |
2.0855 | 6990 | 0.0407 | - |
2.0865 | 7000 | 0.0482 | - |
2.0876 | 7010 | 0.0403 | - |
2.0887 | 7020 | 0.0415 | - |
2.0898 | 7030 | 0.035 | - |
2.0908 | 7040 | 0.0418 | - |
2.0919 | 7050 | 0.0469 | 0.0511 |
2.0930 | 7060 | 0.0331 | - |
2.0941 | 7070 | 0.028 | - |
2.0951 | 7080 | 0.0279 | - |
2.0962 | 7090 | 0.0227 | - |
2.0973 | 7100 | 0.0202 | - |
2.0984 | 7110 | 0.0231 | - |
2.0995 | 7120 | 0.0286 | - |
2.1005 | 7130 | 0.024 | - |
2.1016 | 7140 | 0.0207 | - |
2.1027 | 7150 | 0.0194 | - |
2.1038 | 7160 | 0.0248 | - |
2.1048 | 7170 | 0.0258 | - |
2.1059 | 7180 | 0.0237 | - |
2.1070 | 7190 | 0.0197 | - |
2.1081 | 7200 | 0.0205 | 0.0456 |
2.1091 | 7210 | 0.0184 | - |
2.1102 | 7220 | 0.0178 | - |
2.1113 | 7230 | 0.0258 | - |
2.1124 | 7240 | 0.0293 | - |
2.1134 | 7250 | 0.0213 | - |
2.1145 | 7260 | 0.0218 | - |
2.1156 | 7270 | 0.0271 | - |
2.1167 | 7280 | 0.0293 | - |
2.1177 | 7290 | 0.036 | - |
2.1188 | 7300 | 0.0304 | - |
2.1199 | 7310 | 0.0345 | - |
2.1210 | 7320 | 0.0361 | - |
2.1221 | 7330 | 0.0263 | - |
2.1231 | 7340 | 0.0318 | - |
2.1242 | 7350 | 0.0318 | 0.0427 |
2.1253 | 7360 | 0.0324 | - |
2.1264 | 7370 | 0.03 | - |
2.1274 | 7380 | 0.0305 | - |
2.1285 | 7390 | 0.029 | - |
2.1296 | 7400 | 0.0323 | - |
2.1307 | 7410 | 0.0304 | - |
2.1317 | 7420 | 0.0246 | - |
2.1328 | 7430 | 0.0277 | - |
2.1339 | 7440 | 0.0347 | - |
2.1350 | 7450 | 0.0218 | - |
2.1360 | 7460 | 0.0309 | - |
2.1371 | 7470 | 0.0243 | - |
2.1382 | 7480 | 0.0265 | - |
2.1393 | 7490 | 0.0273 | - |
2.1404 | 7500 | 0.0366 | 0.0440 |
2.1414 | 7510 | 0.0283 | - |
2.1425 | 7520 | 0.0377 | - |
2.1436 | 7530 | 0.0277 | - |
2.1447 | 7540 | 0.0327 | - |
2.1457 | 7550 | 0.023 | - |
2.1468 | 7560 | 0.0286 | - |
2.1479 | 7570 | 0.0241 | - |
2.1490 | 7580 | 0.0284 | - |
2.1500 | 7590 | 0.0282 | - |
2.1511 | 7600 | 0.0249 | - |
2.1522 | 7610 | 0.0275 | - |
2.1533 | 7620 | 0.0308 | - |
2.1543 | 7630 | 0.0294 | - |
2.1554 | 7640 | 0.0263 | - |
2.1565 | 7650 | 0.031 | 0.0427 |
2.1576 | 7660 | 0.0264 | - |
2.1586 | 7670 | 0.0338 | - |
2.1597 | 7680 | 0.0339 | - |
2.1608 | 7690 | 0.0334 | - |
2.1619 | 7700 | 0.0314 | - |
2.1630 | 7710 | 0.0328 | - |
2.1640 | 7720 | 0.0199 | - |
2.1651 | 7730 | 0.0268 | - |
2.1662 | 7740 | 0.0258 | - |
2.1673 | 7750 | 0.0274 | - |
2.1683 | 7760 | 0.026 | - |
2.1694 | 7770 | 0.0248 | - |
2.1705 | 7780 | 0.0208 | - |
2.1716 | 7790 | 0.0231 | - |
2.1726 | 7800 | 0.02 | 0.0447 |
2.1737 | 7810 | 0.0208 | - |
2.1748 | 7820 | 0.0174 | - |
2.1759 | 7830 | 0.0178 | - |
2.1769 | 7840 | 0.0207 | - |
2.1780 | 7850 | 0.0147 | - |
2.1791 | 7860 | 0.0224 | - |
2.1802 | 7870 | 0.0209 | - |
2.1813 | 7880 | 0.0212 | - |
2.1823 | 7890 | 0.018 | - |
2.1834 | 7900 | 0.0177 | - |
2.1845 | 7910 | 0.0149 | - |
2.1856 | 7920 | 0.0154 | - |
2.1866 | 7930 | 0.0143 | - |
2.1877 | 7940 | 0.0183 | - |
2.1888 | 7950 | 0.0217 | 0.0463 |
2.1899 | 7960 | 0.0118 | - |
2.1909 | 7970 | 0.0155 | - |
2.1920 | 7980 | 0.0186 | - |
2.1931 | 7990 | 0.0133 | - |
2.1942 | 8000 | 0.0184 | - |
2.1952 | 8010 | 0.0132 | - |
2.1963 | 8020 | 0.0181 | - |
2.1974 | 8030 | 0.0158 | - |
2.1985 | 8040 | 0.0204 | - |
2.1995 | 8050 | 0.0166 | - |
2.2006 | 8060 | 0.0178 | - |
2.2017 | 8070 | 0.0183 | - |
2.2028 | 8080 | 0.0159 | - |
2.2039 | 8090 | 0.0146 | - |
2.2049 | 8100 | 0.0156 | 0.0482 |
2.2060 | 8110 | 0.0153 | - |
2.2071 | 8120 | 0.0137 | - |
2.2082 | 8130 | 0.0158 | - |
2.2092 | 8140 | 0.0137 | - |
2.2103 | 8150 | 0.0174 | - |
2.2114 | 8160 | 0.0143 | - |
2.2125 | 8170 | 0.0151 | - |
2.2135 | 8180 | 0.0156 | - |
2.2146 | 8190 | 0.0142 | - |
2.2157 | 8200 | 0.0134 | - |
2.2168 | 8210 | 0.0162 | - |
2.2178 | 8220 | 0.015 | - |
2.2189 | 8230 | 0.0172 | - |
2.2200 | 8240 | 0.0149 | - |
2.2211 | 8250 | 0.0159 | 0.0478 |
2.2222 | 8260 | 0.0157 | - |
2.2232 | 8270 | 0.013 | - |
2.2243 | 8280 | 0.0176 | - |
2.2254 | 8290 | 0.0118 | - |
2.2265 | 8300 | 0.0171 | - |
2.2275 | 8310 | 0.0194 | - |
2.2286 | 8320 | 0.0135 | - |
2.2297 | 8330 | 0.0168 | - |
2.2308 | 8340 | 0.0149 | - |
2.2318 | 8350 | 0.0161 | - |
2.2329 | 8360 | 0.0156 | - |
2.2340 | 8370 | 0.0147 | - |
2.2351 | 8380 | 0.0159 | - |
2.2361 | 8390 | 0.0207 | - |
2.2372 | 8400 | 0.0145 | 0.0463 |
2.2383 | 8410 | 0.0155 | - |
2.2394 | 8420 | 0.016 | - |
2.2404 | 8430 | 0.0132 | - |
2.2415 | 8440 | 0.0166 | - |
2.2426 | 8450 | 0.0135 | - |
2.2437 | 8460 | 0.0128 | - |
2.2448 | 8470 | 0.0161 | - |
2.2458 | 8480 | 0.0148 | - |
2.2469 | 8490 | 0.0161 | - |
2.2480 | 8500 | 0.0124 | - |
2.2491 | 8510 | 0.0137 | - |
2.2501 | 8520 | 0.0153 | - |
2.2512 | 8530 | 0.0144 | - |
2.2523 | 8540 | 0.0147 | - |
2.2534 | 8550 | 0.0154 | 0.0490 |
2.2544 | 8560 | 0.0141 | - |
2.2555 | 8570 | 0.0148 | - |
2.2566 | 8580 | 0.0159 | - |
2.2577 | 8590 | 0.0136 | - |
2.2587 | 8600 | 0.0147 | - |
2.2598 | 8610 | 0.0144 | - |
2.2609 | 8620 | 0.0155 | - |
2.2620 | 8630 | 0.0145 | - |
2.2631 | 8640 | 0.0141 | - |
2.2641 | 8650 | 0.014 | - |
2.2652 | 8660 | 0.0111 | - |
2.2663 | 8670 | 0.0146 | - |
2.2674 | 8680 | 0.0136 | - |
2.2684 | 8690 | 0.0158 | - |
2.2695 | 8700 | 0.0138 | 0.0483 |
2.2706 | 8710 | 0.0155 | - |
2.2717 | 8720 | 0.0117 | - |
2.2727 | 8730 | 0.0145 | - |
2.2738 | 8740 | 0.013 | - |
2.2749 | 8750 | 0.0141 | - |
2.2760 | 8760 | 0.0168 | - |
2.2770 | 8770 | 0.0116 | - |
2.2781 | 8780 | 0.0144 | - |
2.2792 | 8790 | 0.0159 | - |
2.2803 | 8800 | 0.0179 | - |
2.2813 | 8810 | 0.015 | - |
2.2824 | 8820 | 0.0175 | - |
2.2835 | 8830 | 0.0126 | - |
2.2846 | 8840 | 0.0139 | - |
2.2857 | 8850 | 0.0125 | 0.0477 |
2.2867 | 8860 | 0.0128 | - |
2.2878 | 8870 | 0.0117 | - |
2.2889 | 8880 | 0.0131 | - |
2.2900 | 8890 | 0.0167 | - |
2.2910 | 8900 | 0.015 | - |
2.2921 | 8910 | 0.0111 | - |
2.2932 | 8920 | 0.0145 | - |
2.2943 | 8930 | 0.0145 | - |
2.2953 | 8940 | 0.0134 | - |
2.2964 | 8950 | 0.0154 | - |
2.2975 | 8960 | 0.0158 | - |
2.2986 | 8970 | 0.0193 | - |
2.2996 | 8980 | 0.0164 | - |
2.3007 | 8990 | 0.014 | - |
2.3018 | 9000 | 0.0147 | 0.0483 |
2.3029 | 9010 | 0.0173 | - |
2.3040 | 9020 | 0.0171 | - |
2.3050 | 9030 | 0.0132 | - |
2.3061 | 9040 | 0.0167 | - |
2.3072 | 9050 | 0.0149 | - |
2.3083 | 9060 | 0.0178 | - |
2.3093 | 9070 | 0.0143 | - |
2.3104 | 9080 | 0.013 | - |
2.3115 | 9090 | 0.0175 | - |
2.3126 | 9100 | 0.0125 | - |
2.3136 | 9110 | 0.0144 | - |
2.3147 | 9120 | 0.0159 | - |
2.3158 | 9130 | 0.0266 | - |
2.3169 | 9140 | 0.0318 | - |
2.3179 | 9150 | 0.034 | 0.0473 |
2.3190 | 9160 | 0.0306 | - |
2.3201 | 9170 | 0.0374 | - |
2.3212 | 9180 | 0.0207 | - |
2.3222 | 9190 | 0.0161 | - |
2.3233 | 9200 | 0.0141 | - |
2.3244 | 9210 | 0.0158 | - |
2.3255 | 9220 | 0.0149 | - |
2.3266 | 9230 | 0.0126 | - |
2.3276 | 9240 | 0.0137 | - |
2.3287 | 9250 | 0.0145 | - |
2.3298 | 9260 | 0.0155 | - |
2.3309 | 9270 | 0.0111 | - |
2.3319 | 9280 | 0.0141 | - |
2.3330 | 9290 | 0.0147 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.2.2
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for LucaZilli/arctic-m-long-q-oai-v3
Base model
Snowflake/snowflake-arctic-embed-m-long