SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-long

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-long on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m-long
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/arctic-m-long-q-oai-v3")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

json

  • Dataset: json
  • Columns: sentence1, sentence2, score, and split
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Columns: sentence1, sentence2, score, and split
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 4.000000000000001e-06
  • max_steps: 9291
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4.000000000000001e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: 9291
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0011 10 0.0927 -
0.0022 20 0.099 -
0.0032 30 0.0915 -
0.0043 40 0.0956 -
0.0054 50 0.0892 -
0.0065 60 0.066 -
0.0075 70 0.1027 -
0.0086 80 0.0994 -
0.0097 90 0.0811 -
0.0108 100 0.0724 -
0.0118 110 0.0845 -
0.0129 120 0.0611 -
0.0140 130 0.0732 -
0.0151 140 0.0682 -
0.0161 150 0.0823 0.0858
0.0172 160 0.0643 -
0.0183 170 0.0826 -
0.0194 180 0.091 -
0.0204 190 0.0737 -
0.0215 200 0.0724 -
0.0226 210 0.0787 -
0.0237 220 0.0831 -
0.0248 230 0.0708 -
0.0258 240 0.0755 -
0.0269 250 0.0889 -
0.0280 260 0.0788 -
0.0291 270 0.0833 -
0.0301 280 0.0707 -
0.0312 290 0.0624 -
0.0323 300 0.0614 0.0837
0.0334 310 0.0738 -
0.0344 320 0.0616 -
0.0355 330 0.0664 -
0.0366 340 0.0706 -
0.0377 350 0.0634 -
0.0387 360 0.0822 -
0.0398 370 0.0722 -
0.0409 380 0.0687 -
0.0420 390 0.0597 -
0.0431 400 0.0594 -
0.0441 410 0.0698 -
0.0452 420 0.0665 -
0.0463 430 0.0815 -
0.0474 440 0.0655 -
0.0484 450 0.0762 0.0792
0.0495 460 0.0638 -
0.0506 470 0.0499 -
0.0517 480 0.0693 -
0.0527 490 0.0576 -
0.0538 500 0.0686 -
0.0549 510 0.0625 -
0.0560 520 0.0655 -
0.0570 530 0.0619 -
0.0581 540 0.0594 -
0.0592 550 0.0699 -
0.0603 560 0.0737 -
0.0613 570 0.0627 -
0.0624 580 0.0604 -
0.0635 590 0.0659 -
0.0646 600 0.0819 0.0706
0.0657 610 0.0683 -
0.0667 620 0.0567 -
0.0678 630 0.0655 -
0.0689 640 0.0672 -
0.0700 650 0.0586 -
0.0710 660 0.0682 -
0.0721 670 0.0587 -
0.0732 680 0.078 -
0.0743 690 0.0658 -
0.0753 700 0.0612 -
0.0764 710 0.0617 -
0.0775 720 0.0659 -
0.0786 730 0.0596 -
0.0796 740 0.0664 -
0.0807 750 0.056 0.0772
0.0818 760 0.062 -
0.0829 770 0.0706 -
0.0840 780 0.0522 -
0.0850 790 0.061 -
0.0861 800 0.0635 -
0.0872 810 0.0579 -
0.0883 820 0.0595 -
0.0893 830 0.0581 -
0.0904 840 0.0606 -
0.0915 850 0.0599 -
0.0926 860 0.0848 -
0.0936 870 0.0899 -
0.0947 880 0.0631 -
0.0958 890 0.0466 -
0.0969 900 0.0419 0.0838
0.0979 910 0.0435 -
0.0990 920 0.0481 -
0.1001 930 0.0498 -
0.1012 940 0.0391 -
0.1022 950 0.037 -
0.1033 960 0.0413 -
0.1044 970 0.0404 -
0.1055 980 0.0414 -
0.1066 990 0.0453 -
0.1076 1000 0.0347 -
0.1087 1010 0.0348 -
0.1098 1020 0.0274 -
0.1109 1030 0.04 -
0.1119 1040 0.0437 -
0.1130 1050 0.042 0.0736
0.1141 1060 0.0353 -
0.1152 1070 0.0589 -
0.1162 1080 0.061 -
0.1173 1090 0.0647 -
0.1184 1100 0.0607 -
0.1195 1110 0.0674 -
0.1205 1120 0.0539 -
0.1216 1130 0.0591 -
0.1227 1140 0.06 -
0.1238 1150 0.0479 -
0.1249 1160 0.0526 -
0.1259 1170 0.0575 -
0.1270 1180 0.0502 -
0.1281 1190 0.0491 -
0.1292 1200 0.053 0.0568
0.1302 1210 0.0448 -
0.1313 1220 0.0435 -
0.1324 1230 0.0593 -
0.1335 1240 0.0423 -
0.1345 1250 0.0536 -
0.1356 1260 0.0388 -
0.1367 1270 0.0486 -
0.1378 1280 0.041 -
0.1388 1290 0.0465 -
0.1399 1300 0.0617 -
0.1410 1310 0.0499 -
0.1421 1320 0.0494 -
0.1431 1330 0.0446 -
0.1442 1340 0.045 -
0.1453 1350 0.0453 0.0516
0.1464 1360 0.0458 -
0.1475 1370 0.0359 -
0.1485 1380 0.0348 -
0.1496 1390 0.0464 -
0.1507 1400 0.042 -
0.1518 1410 0.0397 -
0.1528 1420 0.0415 -
0.1539 1430 0.0521 -
0.1550 1440 0.0394 -
0.1561 1450 0.0463 -
0.1571 1460 0.0426 -
0.1582 1470 0.0437 -
0.1593 1480 0.0524 -
0.1604 1490 0.0443 -
0.1614 1500 0.0448 0.0508
0.1625 1510 0.0487 -
0.1636 1520 0.0341 -
0.1647 1530 0.0345 -
0.1658 1540 0.0283 -
0.1668 1550 0.0342 -
0.1679 1560 0.0452 -
0.1690 1570 0.0355 -
0.1701 1580 0.035 -
0.1711 1590 0.0394 -
0.1722 1600 0.0353 -
0.1733 1610 0.0265 -
0.1744 1620 0.0316 -
0.1754 1630 0.0357 -
0.1765 1640 0.0445 -
0.1776 1650 0.035 0.0459
0.1787 1660 0.0421 -
0.1797 1670 0.0331 -
0.1808 1680 0.0296 -
0.1819 1690 0.0393 -
0.1830 1700 0.0294 -
0.1840 1710 0.039 -
0.1851 1720 0.031 -
0.1862 1730 0.0335 -
0.1873 1740 0.0331 -
0.1884 1750 0.0299 -
0.1894 1760 0.0258 -
0.1905 1770 0.0332 -
0.1916 1780 0.0292 -
0.1927 1790 0.0252 -
0.1937 1800 0.0322 0.0485
0.1948 1810 0.0315 -
0.1959 1820 0.0284 -
0.1970 1830 0.0211 -
0.1980 1840 0.0322 -
0.1991 1850 0.0289 -
0.2002 1860 0.0299 -
0.2013 1870 0.0325 -
0.2023 1880 0.0226 -
0.2034 1890 0.0228 -
0.2045 1900 0.0254 -
0.2056 1910 0.0265 -
0.2067 1920 0.0223 -
0.2077 1930 0.0298 -
0.2088 1940 0.0257 -
0.2099 1950 0.0266 0.0507
0.2110 1960 0.0274 -
0.2120 1970 0.0236 -
0.2131 1980 0.0192 -
0.2142 1990 0.0244 -
0.2153 2000 0.0283 -
0.2163 2010 0.0226 -
0.2174 2020 0.0254 -
0.2185 2030 0.0219 -
0.2196 2040 0.0264 -
0.2206 2050 0.0238 -
0.2217 2060 0.0249 -
0.2228 2070 0.022 -
0.2239 2080 0.0222 -
0.2249 2090 0.0238 -
0.2260 2100 0.0256 0.0514
0.2271 2110 0.0279 -
0.2282 2120 0.0197 -
0.2293 2130 0.0249 -
0.2303 2140 0.0264 -
0.2314 2150 0.0226 -
0.2325 2160 0.0292 -
0.2336 2170 0.028 -
0.2346 2180 0.0199 -
0.2357 2190 0.0273 -
0.2368 2200 0.0267 -
0.2379 2210 0.0287 -
0.2389 2220 0.0221 -
0.2400 2230 0.0185 -
0.2411 2240 0.023 -
0.2422 2250 0.024 0.0519
0.2432 2260 0.0224 -
0.2443 2270 0.0249 -
0.2454 2280 0.0227 -
0.2465 2290 0.0144 -
0.2476 2300 0.021 -
0.2486 2310 0.0248 -
0.2497 2320 0.0206 -
0.2508 2330 0.0203 -
0.2519 2340 0.022 -
0.2529 2350 0.0229 -
0.2540 2360 0.0216 -
0.2551 2370 0.0304 -
0.2562 2380 0.0197 -
0.2572 2390 0.0206 -
0.2583 2400 0.025 0.0554
0.2594 2410 0.0224 -
0.2605 2420 0.0211 -
0.2615 2430 0.0173 -
0.2626 2440 0.0186 -
0.2637 2450 0.0233 -
0.2648 2460 0.0182 -
0.2658 2470 0.0215 -
0.2669 2480 0.0221 -
0.2680 2490 0.019 -
0.2691 2500 0.022 -
0.2702 2510 0.0209 -
0.2712 2520 0.0224 -
0.2723 2530 0.0208 -
0.2734 2540 0.0198 -
0.2745 2550 0.0273 0.0622
0.2755 2560 0.0238 -
0.2766 2570 0.0196 -
0.2777 2580 0.0213 -
0.2788 2590 0.0231 -
0.2798 2600 0.0236 -
0.2809 2610 0.0211 -
0.2820 2620 0.0249 -
0.2831 2630 0.0191 -
0.2841 2640 0.0177 -
0.2852 2650 0.0182 -
0.2863 2660 0.0143 -
0.2874 2670 0.019 -
0.2885 2680 0.0182 -
0.2895 2690 0.0219 -
0.2906 2700 0.0209 0.0568
0.2917 2710 0.0219 -
0.2928 2720 0.0211 -
0.2938 2730 0.0182 -
0.2949 2740 0.0177 -
0.2960 2750 0.0246 -
0.2971 2760 0.0165 -
0.2981 2770 0.0216 -
0.2992 2780 0.0189 -
0.3003 2790 0.024 -
0.3014 2800 0.0215 -
0.3024 2810 0.0244 -
0.3035 2820 0.0179 -
0.3046 2830 0.018 -
0.3057 2840 0.0212 -
0.3067 2850 0.0223 0.0577
0.3078 2860 0.0258 -
0.3089 2870 0.0171 -
0.3100 2880 0.019 -
0.3111 2890 0.0206 -
0.3121 2900 0.0178 -
0.3132 2910 0.0172 -
0.3143 2920 0.0225 -
0.3154 2930 0.0433 -
0.3164 2940 0.0482 -
0.3175 2950 0.0475 -
0.3186 2960 0.0465 -
0.3197 2970 0.048 -
0.3207 2980 0.0322 -
0.3218 2990 0.0272 -
0.3229 3000 0.0232 0.0499
0.3240 3010 0.025 -
0.3250 3020 0.0196 -
0.3261 3030 0.0192 -
0.3272 3040 0.0177 -
0.3283 3050 0.0219 -
0.3294 3060 0.0178 -
0.3304 3070 0.0152 -
0.3315 3080 0.0187 -
0.3326 3090 0.0189 -
1.0002 3100 0.0315 -
1.0013 3110 0.0717 -
1.0024 3120 0.07 -
1.0034 3130 0.0613 -
1.0045 3140 0.0771 -
1.0056 3150 0.0593 0.0542
1.0067 3160 0.0671 -
1.0077 3170 0.0655 -
1.0088 3180 0.0578 -
1.0099 3190 0.0561 -
1.0110 3200 0.0577 -
1.0121 3210 0.0641 -
1.0131 3220 0.0506 -
1.0142 3230 0.0528 -
1.0153 3240 0.0477 -
1.0164 3250 0.052 -
1.0174 3260 0.0579 -
1.0185 3270 0.054 -
1.0196 3280 0.0592 -
1.0207 3290 0.0529 -
1.0217 3300 0.0556 0.0572
1.0228 3310 0.064 -
1.0239 3320 0.0564 -
1.0250 3330 0.0597 -
1.0260 3340 0.0568 -
1.0271 3350 0.0531 -
1.0282 3360 0.0517 -
1.0293 3370 0.0515 -
1.0304 3380 0.0552 -
1.0314 3390 0.0529 -
1.0325 3400 0.0448 -
1.0336 3410 0.0485 -
1.0347 3420 0.044 -
1.0357 3430 0.0474 -
1.0368 3440 0.0536 -
1.0379 3450 0.0487 0.0620
1.0390 3460 0.0611 -
1.0400 3470 0.0505 -
1.0411 3480 0.0474 -
1.0422 3490 0.0434 -
1.0433 3500 0.0448 -
1.0443 3510 0.0451 -
1.0454 3520 0.0485 -
1.0465 3530 0.0546 -
1.0476 3540 0.0467 -
1.0486 3550 0.0465 -
1.0497 3560 0.0489 -
1.0508 3570 0.0463 -
1.0519 3580 0.0501 -
1.0530 3590 0.0413 -
1.0540 3600 0.044 0.0538
1.0551 3610 0.0519 -
1.0562 3620 0.0381 -
1.0573 3630 0.0445 -
1.0583 3640 0.0407 -
1.0594 3650 0.0483 -
1.0605 3660 0.0613 -
1.0616 3670 0.0483 -
1.0626 3680 0.0407 -
1.0637 3690 0.0519 -
1.0648 3700 0.0489 -
1.0659 3710 0.0469 -
1.0669 3720 0.047 -
1.0680 3730 0.0568 -
1.0691 3740 0.0492 -
1.0702 3750 0.0391 0.0546
1.0713 3760 0.0495 -
1.0723 3770 0.0628 -
1.0734 3780 0.0444 -
1.0745 3790 0.0443 -
1.0756 3800 0.0466 -
1.0766 3810 0.0542 -
1.0777 3820 0.0485 -
1.0788 3830 0.0529 -
1.0799 3840 0.0401 -
1.0809 3850 0.0407 -
1.0820 3860 0.0515 -
1.0831 3870 0.0497 -
1.0842 3880 0.0425 -
1.0852 3890 0.0429 -
1.0863 3900 0.0523 0.0563
1.0874 3910 0.0456 -
1.0885 3920 0.0469 -
1.0895 3930 0.0395 -
1.0906 3940 0.0495 -
1.0917 3950 0.0626 -
1.0928 3960 0.0406 -
1.0939 3970 0.0397 -
1.0949 3980 0.0269 -
1.0960 3990 0.0241 -
1.0971 4000 0.0336 -
1.0982 4010 0.0256 -
1.0992 4020 0.0317 -
1.1003 4030 0.0315 -
1.1014 4040 0.025 -
1.1025 4050 0.0222 0.0463
1.1035 4060 0.0245 -
1.1046 4070 0.0321 -
1.1057 4080 0.0256 -
1.1068 4090 0.028 -
1.1078 4100 0.0195 -
1.1089 4110 0.0207 -
1.1100 4120 0.0232 -
1.1111 4130 0.0266 -
1.1122 4140 0.0271 -
1.1132 4150 0.0309 -
1.1143 4160 0.0275 -
1.1154 4170 0.0252 -
1.1165 4180 0.0431 -
1.1175 4190 0.0397 -
1.1186 4200 0.0415 0.0479
1.1197 4210 0.0391 -
1.1208 4220 0.0385 -
1.1218 4230 0.0357 -
1.1229 4240 0.0335 -
1.1240 4250 0.0329 -
1.1251 4260 0.0349 -
1.1261 4270 0.0355 -
1.1272 4280 0.0334 -
1.1283 4290 0.0335 -
1.1294 4300 0.0277 -
1.1304 4310 0.0433 -
1.1315 4320 0.0369 -
1.1326 4330 0.0306 -
1.1337 4340 0.0393 -
1.1348 4350 0.0277 0.0457
1.1358 4360 0.0358 -
1.1369 4370 0.0256 -
1.1380 4380 0.0441 -
1.1391 4390 0.0303 -
1.1401 4400 0.0348 -
1.1412 4410 0.0345 -
1.1423 4420 0.0438 -
1.1434 4430 0.0352 -
1.1444 4440 0.0304 -
1.1455 4450 0.0334 -
1.1466 4460 0.0309 -
1.1477 4470 0.0282 -
1.1487 4480 0.025 -
1.1498 4490 0.0314 -
1.1509 4500 0.0286 0.0451
1.1520 4510 0.0401 -
1.1531 4520 0.0284 -
1.1541 4530 0.0377 -
1.1552 4540 0.0289 -
1.1563 4550 0.0381 -
1.1574 4560 0.0331 -
1.1584 4570 0.0334 -
1.1595 4580 0.0409 -
1.1606 4590 0.0323 -
1.1617 4600 0.0373 -
1.1627 4610 0.0316 -
1.1638 4620 0.026 -
1.1649 4630 0.0268 -
1.1660 4640 0.0272 -
1.1670 4650 0.03 0.0447
1.1681 4660 0.0287 -
1.1692 4670 0.0314 -
1.1703 4680 0.0236 -
1.1713 4690 0.0247 -
1.1724 4700 0.0213 -
1.1735 4710 0.0206 -
1.1746 4720 0.0218 -
1.1757 4730 0.0236 -
1.1767 4740 0.024 -
1.1778 4750 0.0203 -
1.1789 4760 0.0264 -
1.1800 4770 0.0188 -
1.1810 4780 0.0244 -
1.1821 4790 0.0179 -
1.1832 4800 0.0197 0.0449
1.1843 4810 0.0142 -
1.1853 4820 0.0202 -
1.1864 4830 0.0222 -
1.1875 4840 0.0148 -
1.1886 4850 0.0223 -
1.1896 4860 0.0173 -
1.1907 4870 0.0162 -
1.1918 4880 0.0173 -
1.1929 4890 0.0192 -
1.1940 4900 0.0187 -
1.1950 4910 0.0175 -
1.1961 4920 0.0157 -
1.1972 4930 0.0185 -
1.1983 4940 0.0207 -
1.1993 4950 0.0205 0.0488
1.2004 4960 0.0165 -
1.2015 4970 0.0198 -
1.2026 4980 0.018 -
1.2036 4990 0.0178 -
1.2047 5000 0.0153 -
1.2058 5010 0.017 -
1.2069 5020 0.0178 -
1.2079 5030 0.0181 -
1.2090 5040 0.015 -
1.2101 5050 0.0193 -
1.2112 5060 0.0213 -
1.2122 5070 0.0135 -
1.2133 5080 0.0158 -
1.2144 5090 0.0188 -
1.2155 5100 0.018 0.0507
1.2166 5110 0.0155 -
1.2176 5120 0.013 -
1.2187 5130 0.0209 -
1.2198 5140 0.0177 -
1.2209 5150 0.0184 -
1.2219 5160 0.0144 -
1.2230 5170 0.0164 -
1.2241 5180 0.0165 -
1.2252 5190 0.0168 -
1.2262 5200 0.0186 -
1.2273 5210 0.0166 -
1.2284 5220 0.0165 -
1.2295 5230 0.0165 -
1.2305 5240 0.0179 -
1.2316 5250 0.0184 0.0498
1.2327 5260 0.0148 -
1.2338 5270 0.021 -
1.2349 5280 0.0173 -
1.2359 5290 0.0199 -
1.2370 5300 0.0204 -
1.2381 5310 0.0202 -
1.2392 5320 0.0138 -
1.2402 5330 0.017 -
1.2413 5340 0.0156 -
1.2424 5350 0.0173 -
1.2435 5360 0.0163 -
1.2445 5370 0.0175 -
1.2456 5380 0.0165 -
1.2467 5390 0.0132 -
1.2478 5400 0.0179 0.0573
1.2488 5410 0.0149 -
1.2499 5420 0.0171 -
1.2510 5430 0.0188 -
1.2521 5440 0.0146 -
1.2531 5450 0.0152 -
1.2542 5460 0.0171 -
1.2553 5470 0.0198 -
1.2564 5480 0.0162 -
1.2575 5490 0.0173 -
1.2585 5500 0.019 -
1.2596 5510 0.0136 -
1.2607 5520 0.0173 -
1.2618 5530 0.015 -
1.2628 5540 0.0121 -
1.2639 5550 0.0166 0.0564
1.2650 5560 0.0156 -
1.2661 5570 0.0164 -
1.2671 5580 0.017 -
1.2682 5590 0.0134 -
1.2693 5600 0.0175 -
1.2704 5610 0.0154 -
1.2714 5620 0.0203 -
1.2725 5630 0.011 -
1.2736 5640 0.0142 -
1.2747 5650 0.0204 -
1.2758 5660 0.0167 -
1.2768 5670 0.0173 -
1.2779 5680 0.0149 -
1.2790 5690 0.0182 -
1.2801 5700 0.0172 0.0537
1.2811 5710 0.02 -
1.2822 5720 0.0168 -
1.2833 5730 0.016 -
1.2844 5740 0.0148 -
1.2854 5750 0.0145 -
1.2865 5760 0.0142 -
1.2876 5770 0.0126 -
1.2887 5780 0.0155 -
1.2897 5790 0.0161 -
1.2908 5800 0.0152 -
1.2919 5810 0.0152 -
1.2930 5820 0.0125 -
1.2940 5830 0.0187 -
1.2951 5840 0.0153 -
1.2962 5850 0.021 0.0545
1.2973 5860 0.0134 -
1.2984 5870 0.0181 -
1.2994 5880 0.0208 -
1.3005 5890 0.0134 -
1.3016 5900 0.0158 -
1.3027 5910 0.0186 -
1.3037 5920 0.0182 -
1.3048 5930 0.0149 -
1.3059 5940 0.0147 -
1.3070 5950 0.0159 -
1.3080 5960 0.0174 -
1.3091 5970 0.0162 -
1.3102 5980 0.0153 -
1.3113 5990 0.0154 -
1.3123 6000 0.0145 0.0574
1.3134 6010 0.017 -
1.3145 6020 0.0161 -
1.3156 6030 0.0328 -
1.3167 6040 0.0384 -
1.3177 6050 0.0362 -
1.3188 6060 0.0291 -
1.3199 6070 0.0332 -
1.3210 6080 0.0287 -
1.3220 6090 0.0198 -
1.3231 6100 0.0189 -
1.3242 6110 0.0216 -
1.3253 6120 0.0123 -
1.3263 6130 0.0162 -
1.3274 6140 0.0167 -
1.3285 6150 0.014 0.0491
1.3296 6160 0.0193 -
1.3306 6170 0.0127 -
1.3317 6180 0.0171 -
1.3328 6190 0.0125 -
2.0004 6200 0.0305 -
2.0015 6210 0.0519 -
2.0026 6220 0.047 -
2.0037 6230 0.0588 -
2.0047 6240 0.0486 -
2.0058 6250 0.0468 -
2.0069 6260 0.0447 -
2.0080 6270 0.0506 -
2.0090 6280 0.0509 -
2.0101 6290 0.0467 -
2.0112 6300 0.0421 0.0503
2.0123 6310 0.0427 -
2.0133 6320 0.05 -
2.0144 6330 0.0352 -
2.0155 6340 0.0381 -
2.0166 6350 0.0456 -
2.0177 6360 0.044 -
2.0187 6370 0.0488 -
2.0198 6380 0.0436 -
2.0209 6390 0.0361 -
2.0220 6400 0.0548 -
2.0230 6410 0.0551 -
2.0241 6420 0.0467 -
2.0252 6430 0.0448 -
2.0263 6440 0.0422 -
2.0273 6450 0.0406 0.0497
2.0284 6460 0.038 -
2.0295 6470 0.0517 -
2.0306 6480 0.0415 -
2.0316 6490 0.0372 -
2.0327 6500 0.0432 -
2.0338 6510 0.0425 -
2.0349 6520 0.033 -
2.0359 6530 0.0456 -
2.0370 6540 0.0334 -
2.0381 6550 0.0464 -
2.0392 6560 0.0559 -
2.0403 6570 0.0392 -
2.0413 6580 0.041 -
2.0424 6590 0.0413 -
2.0435 6600 0.0354 0.0508
2.0446 6610 0.0439 -
2.0456 6620 0.0385 -
2.0467 6630 0.0366 -
2.0478 6640 0.0381 -
2.0489 6650 0.0444 -
2.0499 6660 0.045 -
2.0510 6670 0.0364 -
2.0521 6680 0.0351 -
2.0532 6690 0.031 -
2.0542 6700 0.0454 -
2.0553 6710 0.0354 -
2.0564 6720 0.0355 -
2.0575 6730 0.0377 -
2.0586 6740 0.036 -
2.0596 6750 0.0407 0.0523
2.0607 6760 0.0555 -
2.0618 6770 0.0386 -
2.0629 6780 0.0401 -
2.0639 6790 0.0515 -
2.0650 6800 0.0379 -
2.0661 6810 0.0406 -
2.0672 6820 0.0384 -
2.0682 6830 0.0416 -
2.0693 6840 0.0368 -
2.0704 6850 0.0381 -
2.0715 6860 0.0541 -
2.0725 6870 0.0428 -
2.0736 6880 0.0452 -
2.0747 6890 0.0384 -
2.0758 6900 0.0387 0.0509
2.0768 6910 0.0398 -
2.0779 6920 0.0449 -
2.0790 6930 0.0418 -
2.0801 6940 0.0437 -
2.0812 6950 0.0349 -
2.0822 6960 0.0421 -
2.0833 6970 0.0353 -
2.0844 6980 0.0373 -
2.0855 6990 0.0407 -
2.0865 7000 0.0482 -
2.0876 7010 0.0403 -
2.0887 7020 0.0415 -
2.0898 7030 0.035 -
2.0908 7040 0.0418 -
2.0919 7050 0.0469 0.0511
2.0930 7060 0.0331 -
2.0941 7070 0.028 -
2.0951 7080 0.0279 -
2.0962 7090 0.0227 -
2.0973 7100 0.0202 -
2.0984 7110 0.0231 -
2.0995 7120 0.0286 -
2.1005 7130 0.024 -
2.1016 7140 0.0207 -
2.1027 7150 0.0194 -
2.1038 7160 0.0248 -
2.1048 7170 0.0258 -
2.1059 7180 0.0237 -
2.1070 7190 0.0197 -
2.1081 7200 0.0205 0.0456
2.1091 7210 0.0184 -
2.1102 7220 0.0178 -
2.1113 7230 0.0258 -
2.1124 7240 0.0293 -
2.1134 7250 0.0213 -
2.1145 7260 0.0218 -
2.1156 7270 0.0271 -
2.1167 7280 0.0293 -
2.1177 7290 0.036 -
2.1188 7300 0.0304 -
2.1199 7310 0.0345 -
2.1210 7320 0.0361 -
2.1221 7330 0.0263 -
2.1231 7340 0.0318 -
2.1242 7350 0.0318 0.0427
2.1253 7360 0.0324 -
2.1264 7370 0.03 -
2.1274 7380 0.0305 -
2.1285 7390 0.029 -
2.1296 7400 0.0323 -
2.1307 7410 0.0304 -
2.1317 7420 0.0246 -
2.1328 7430 0.0277 -
2.1339 7440 0.0347 -
2.1350 7450 0.0218 -
2.1360 7460 0.0309 -
2.1371 7470 0.0243 -
2.1382 7480 0.0265 -
2.1393 7490 0.0273 -
2.1404 7500 0.0366 0.0440
2.1414 7510 0.0283 -
2.1425 7520 0.0377 -
2.1436 7530 0.0277 -
2.1447 7540 0.0327 -
2.1457 7550 0.023 -
2.1468 7560 0.0286 -
2.1479 7570 0.0241 -
2.1490 7580 0.0284 -
2.1500 7590 0.0282 -
2.1511 7600 0.0249 -
2.1522 7610 0.0275 -
2.1533 7620 0.0308 -
2.1543 7630 0.0294 -
2.1554 7640 0.0263 -
2.1565 7650 0.031 0.0427
2.1576 7660 0.0264 -
2.1586 7670 0.0338 -
2.1597 7680 0.0339 -
2.1608 7690 0.0334 -
2.1619 7700 0.0314 -
2.1630 7710 0.0328 -
2.1640 7720 0.0199 -
2.1651 7730 0.0268 -
2.1662 7740 0.0258 -
2.1673 7750 0.0274 -
2.1683 7760 0.026 -
2.1694 7770 0.0248 -
2.1705 7780 0.0208 -
2.1716 7790 0.0231 -
2.1726 7800 0.02 0.0447
2.1737 7810 0.0208 -
2.1748 7820 0.0174 -
2.1759 7830 0.0178 -
2.1769 7840 0.0207 -
2.1780 7850 0.0147 -
2.1791 7860 0.0224 -
2.1802 7870 0.0209 -
2.1813 7880 0.0212 -
2.1823 7890 0.018 -
2.1834 7900 0.0177 -
2.1845 7910 0.0149 -
2.1856 7920 0.0154 -
2.1866 7930 0.0143 -
2.1877 7940 0.0183 -
2.1888 7950 0.0217 0.0463
2.1899 7960 0.0118 -
2.1909 7970 0.0155 -
2.1920 7980 0.0186 -
2.1931 7990 0.0133 -
2.1942 8000 0.0184 -
2.1952 8010 0.0132 -
2.1963 8020 0.0181 -
2.1974 8030 0.0158 -
2.1985 8040 0.0204 -
2.1995 8050 0.0166 -
2.2006 8060 0.0178 -
2.2017 8070 0.0183 -
2.2028 8080 0.0159 -
2.2039 8090 0.0146 -
2.2049 8100 0.0156 0.0482
2.2060 8110 0.0153 -
2.2071 8120 0.0137 -
2.2082 8130 0.0158 -
2.2092 8140 0.0137 -
2.2103 8150 0.0174 -
2.2114 8160 0.0143 -
2.2125 8170 0.0151 -
2.2135 8180 0.0156 -
2.2146 8190 0.0142 -
2.2157 8200 0.0134 -
2.2168 8210 0.0162 -
2.2178 8220 0.015 -
2.2189 8230 0.0172 -
2.2200 8240 0.0149 -
2.2211 8250 0.0159 0.0478
2.2222 8260 0.0157 -
2.2232 8270 0.013 -
2.2243 8280 0.0176 -
2.2254 8290 0.0118 -
2.2265 8300 0.0171 -
2.2275 8310 0.0194 -
2.2286 8320 0.0135 -
2.2297 8330 0.0168 -
2.2308 8340 0.0149 -
2.2318 8350 0.0161 -
2.2329 8360 0.0156 -
2.2340 8370 0.0147 -
2.2351 8380 0.0159 -
2.2361 8390 0.0207 -
2.2372 8400 0.0145 0.0463
2.2383 8410 0.0155 -
2.2394 8420 0.016 -
2.2404 8430 0.0132 -
2.2415 8440 0.0166 -
2.2426 8450 0.0135 -
2.2437 8460 0.0128 -
2.2448 8470 0.0161 -
2.2458 8480 0.0148 -
2.2469 8490 0.0161 -
2.2480 8500 0.0124 -
2.2491 8510 0.0137 -
2.2501 8520 0.0153 -
2.2512 8530 0.0144 -
2.2523 8540 0.0147 -
2.2534 8550 0.0154 0.0490
2.2544 8560 0.0141 -
2.2555 8570 0.0148 -
2.2566 8580 0.0159 -
2.2577 8590 0.0136 -
2.2587 8600 0.0147 -
2.2598 8610 0.0144 -
2.2609 8620 0.0155 -
2.2620 8630 0.0145 -
2.2631 8640 0.0141 -
2.2641 8650 0.014 -
2.2652 8660 0.0111 -
2.2663 8670 0.0146 -
2.2674 8680 0.0136 -
2.2684 8690 0.0158 -
2.2695 8700 0.0138 0.0483
2.2706 8710 0.0155 -
2.2717 8720 0.0117 -
2.2727 8730 0.0145 -
2.2738 8740 0.013 -
2.2749 8750 0.0141 -
2.2760 8760 0.0168 -
2.2770 8770 0.0116 -
2.2781 8780 0.0144 -
2.2792 8790 0.0159 -
2.2803 8800 0.0179 -
2.2813 8810 0.015 -
2.2824 8820 0.0175 -
2.2835 8830 0.0126 -
2.2846 8840 0.0139 -
2.2857 8850 0.0125 0.0477
2.2867 8860 0.0128 -
2.2878 8870 0.0117 -
2.2889 8880 0.0131 -
2.2900 8890 0.0167 -
2.2910 8900 0.015 -
2.2921 8910 0.0111 -
2.2932 8920 0.0145 -
2.2943 8930 0.0145 -
2.2953 8940 0.0134 -
2.2964 8950 0.0154 -
2.2975 8960 0.0158 -
2.2986 8970 0.0193 -
2.2996 8980 0.0164 -
2.3007 8990 0.014 -
2.3018 9000 0.0147 0.0483
2.3029 9010 0.0173 -
2.3040 9020 0.0171 -
2.3050 9030 0.0132 -
2.3061 9040 0.0167 -
2.3072 9050 0.0149 -
2.3083 9060 0.0178 -
2.3093 9070 0.0143 -
2.3104 9080 0.013 -
2.3115 9090 0.0175 -
2.3126 9100 0.0125 -
2.3136 9110 0.0144 -
2.3147 9120 0.0159 -
2.3158 9130 0.0266 -
2.3169 9140 0.0318 -
2.3179 9150 0.034 0.0473
2.3190 9160 0.0306 -
2.3201 9170 0.0374 -
2.3212 9180 0.0207 -
2.3222 9190 0.0161 -
2.3233 9200 0.0141 -
2.3244 9210 0.0158 -
2.3255 9220 0.0149 -
2.3266 9230 0.0126 -
2.3276 9240 0.0137 -
2.3287 9250 0.0145 -
2.3298 9260 0.0155 -
2.3309 9270 0.0111 -
2.3319 9280 0.0141 -
2.3330 9290 0.0147 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.2.2
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
21
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for LucaZilli/arctic-m-long-q-oai-v3

Finetuned
(8)
this model