SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-long
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-long on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m-long
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/arctic-m-long-q-oai-v1")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 4.000000000000001e-06num_train_epochs
: 1max_steps
: 20000warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4.000000000000001e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: 20000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 10 | 0.0654 | - |
0.001 | 20 | 0.0806 | - |
0.0015 | 30 | 0.0963 | - |
0.002 | 40 | 0.0865 | - |
0.0025 | 50 | 0.0798 | - |
0.003 | 60 | 0.0862 | - |
0.0035 | 70 | 0.084 | - |
0.004 | 80 | 0.0843 | - |
0.0045 | 90 | 0.0819 | - |
0.005 | 100 | 0.0861 | - |
0.0055 | 110 | 0.092 | - |
0.006 | 120 | 0.095 | - |
0.0065 | 130 | 0.0829 | - |
0.007 | 140 | 0.0759 | - |
0.0075 | 150 | 0.0749 | 0.0904 |
0.008 | 160 | 0.0667 | - |
0.0085 | 170 | 0.0845 | - |
0.009 | 180 | 0.0803 | - |
0.0095 | 190 | 0.0895 | - |
0.01 | 200 | 0.0805 | - |
0.0105 | 210 | 0.0808 | - |
0.011 | 220 | 0.0699 | - |
0.0115 | 230 | 0.0718 | - |
0.012 | 240 | 0.0817 | - |
0.0125 | 250 | 0.0687 | - |
0.013 | 260 | 0.0877 | - |
0.0135 | 270 | 0.0756 | - |
0.014 | 280 | 0.076 | - |
0.0145 | 290 | 0.0717 | - |
0.015 | 300 | 0.0822 | 0.0855 |
0.0155 | 310 | 0.0756 | - |
0.016 | 320 | 0.0697 | - |
0.0165 | 330 | 0.0812 | - |
0.017 | 340 | 0.0637 | - |
0.0175 | 350 | 0.0672 | - |
0.018 | 360 | 0.067 | - |
0.0185 | 370 | 0.0658 | - |
0.019 | 380 | 0.0694 | - |
0.0195 | 390 | 0.0664 | - |
0.02 | 400 | 0.075 | - |
0.0205 | 410 | 0.0662 | - |
0.021 | 420 | 0.0828 | - |
0.0215 | 430 | 0.0707 | - |
0.022 | 440 | 0.0748 | - |
0.0225 | 450 | 0.0762 | 0.0788 |
0.023 | 460 | 0.0724 | - |
0.0235 | 470 | 0.0621 | - |
0.024 | 480 | 0.0767 | - |
0.0245 | 490 | 0.0576 | - |
0.025 | 500 | 0.061 | - |
0.0255 | 510 | 0.0711 | - |
0.026 | 520 | 0.0742 | - |
0.0265 | 530 | 0.0737 | - |
0.027 | 540 | 0.074 | - |
0.0275 | 550 | 0.0723 | - |
0.028 | 560 | 0.0781 | - |
0.0285 | 570 | 0.0628 | - |
0.029 | 580 | 0.0636 | - |
0.0295 | 590 | 0.0658 | - |
0.03 | 600 | 0.0771 | 0.0794 |
0.0305 | 610 | 0.0832 | - |
0.031 | 620 | 0.0737 | - |
0.0315 | 630 | 0.0636 | - |
0.032 | 640 | 0.0825 | - |
0.0325 | 650 | 0.0822 | - |
0.033 | 660 | 0.0629 | - |
0.0335 | 670 | 0.0751 | - |
0.034 | 680 | 0.0823 | - |
0.0345 | 690 | 0.0553 | - |
0.035 | 700 | 0.0717 | - |
0.0355 | 710 | 0.0681 | - |
0.036 | 720 | 0.068 | - |
0.0365 | 730 | 0.065 | - |
0.037 | 740 | 0.0572 | - |
0.0375 | 750 | 0.0634 | 0.0766 |
0.038 | 760 | 0.0593 | - |
0.0385 | 770 | 0.0586 | - |
0.039 | 780 | 0.0677 | - |
0.0395 | 790 | 0.0622 | - |
0.04 | 800 | 0.087 | - |
0.0405 | 810 | 0.0888 | - |
0.041 | 820 | 0.0708 | - |
0.0415 | 830 | 0.0952 | - |
0.042 | 840 | 0.079 | - |
0.0425 | 850 | 0.0819 | - |
0.043 | 860 | 0.0748 | - |
0.0435 | 870 | 0.0633 | - |
0.044 | 880 | 0.0649 | - |
0.0445 | 890 | 0.0734 | - |
0.045 | 900 | 0.0514 | 0.0708 |
0.0455 | 910 | 0.0529 | - |
0.046 | 920 | 0.047 | - |
0.0465 | 930 | 0.0466 | - |
0.047 | 940 | 0.0436 | - |
0.0475 | 950 | 0.0493 | - |
0.048 | 960 | 0.0492 | - |
0.0485 | 970 | 0.0413 | - |
0.049 | 980 | 0.0464 | - |
0.0495 | 990 | 0.0425 | - |
0.05 | 1000 | 0.0454 | - |
0.0505 | 1010 | 0.0506 | - |
0.051 | 1020 | 0.0378 | - |
0.0515 | 1030 | 0.0379 | - |
0.052 | 1040 | 0.0462 | - |
0.0525 | 1050 | 0.0443 | 0.0685 |
0.053 | 1060 | 0.0419 | - |
0.0535 | 1070 | 0.05 | - |
0.054 | 1080 | 0.042 | - |
0.0545 | 1090 | 0.0437 | - |
0.055 | 1100 | 0.044 | - |
0.0555 | 1110 | 0.0387 | - |
0.056 | 1120 | 0.0484 | - |
0.0565 | 1130 | 0.0457 | - |
0.057 | 1140 | 0.0343 | - |
0.0575 | 1150 | 0.0431 | - |
0.058 | 1160 | 0.0397 | - |
0.0585 | 1170 | 0.0394 | - |
0.059 | 1180 | 0.0427 | - |
0.0595 | 1190 | 0.0469 | - |
0.06 | 1200 | 0.0392 | 0.0700 |
0.0605 | 1210 | 0.0492 | - |
0.061 | 1220 | 0.0398 | - |
0.0615 | 1230 | 0.0434 | - |
0.062 | 1240 | 0.042 | - |
0.0625 | 1250 | 0.0596 | - |
0.063 | 1260 | 0.0451 | - |
0.0635 | 1270 | 0.0455 | - |
0.064 | 1280 | 0.0554 | - |
0.0645 | 1290 | 0.0431 | - |
0.065 | 1300 | 0.0523 | - |
0.0655 | 1310 | 0.0531 | - |
0.066 | 1320 | 0.0493 | - |
0.0665 | 1330 | 0.0421 | - |
0.067 | 1340 | 0.0423 | - |
0.0675 | 1350 | 0.0704 | 0.0628 |
0.068 | 1360 | 0.0647 | - |
0.0685 | 1370 | 0.0478 | - |
0.069 | 1380 | 0.0534 | - |
0.0695 | 1390 | 0.0502 | - |
0.07 | 1400 | 0.0538 | - |
0.0705 | 1410 | 0.0688 | - |
0.071 | 1420 | 0.0632 | - |
0.0715 | 1430 | 0.0482 | - |
0.072 | 1440 | 0.0576 | - |
0.0725 | 1450 | 0.043 | - |
0.073 | 1460 | 0.0397 | - |
0.0735 | 1470 | 0.0553 | - |
0.074 | 1480 | 0.0536 | - |
0.0745 | 1490 | 0.045 | - |
0.075 | 1500 | 0.0464 | 0.0573 |
0.0755 | 1510 | 0.0481 | - |
0.076 | 1520 | 0.049 | - |
0.0765 | 1530 | 0.0554 | - |
0.077 | 1540 | 0.0555 | - |
0.0775 | 1550 | 0.048 | - |
0.078 | 1560 | 0.0491 | - |
0.0785 | 1570 | 0.046 | - |
0.079 | 1580 | 0.0535 | - |
0.0795 | 1590 | 0.0373 | - |
0.08 | 1600 | 0.0494 | - |
0.0805 | 1610 | 0.0413 | - |
0.081 | 1620 | 0.0519 | - |
0.0815 | 1630 | 0.0462 | - |
0.082 | 1640 | 0.0473 | - |
0.0825 | 1650 | 0.0382 | 0.0529 |
0.083 | 1660 | 0.0326 | - |
0.0835 | 1670 | 0.0522 | - |
0.084 | 1680 | 0.042 | - |
0.0845 | 1690 | 0.0478 | - |
0.085 | 1700 | 0.0352 | - |
0.0855 | 1710 | 0.0448 | - |
0.086 | 1720 | 0.0424 | - |
0.0865 | 1730 | 0.0437 | - |
0.087 | 1740 | 0.0458 | - |
0.0875 | 1750 | 0.041 | - |
0.088 | 1760 | 0.0365 | - |
0.0885 | 1770 | 0.0353 | - |
0.089 | 1780 | 0.0403 | - |
0.0895 | 1790 | 0.0352 | - |
0.09 | 1800 | 0.0515 | 0.0495 |
0.0905 | 1810 | 0.0302 | - |
0.091 | 1820 | 0.0342 | - |
1.0002 | 1830 | 0.0528 | - |
1.0007 | 1840 | 0.0661 | - |
1.0012 | 1850 | 0.064 | - |
1.0017 | 1860 | 0.0717 | - |
1.0022 | 1870 | 0.0507 | - |
1.0027 | 1880 | 0.0584 | - |
1.0032 | 1890 | 0.0577 | - |
1.0037 | 1900 | 0.0549 | - |
1.0042 | 1910 | 0.0577 | - |
1.0047 | 1920 | 0.061 | - |
1.0052 | 1930 | 0.0496 | - |
1.0057 | 1940 | 0.0607 | - |
1.0062 | 1950 | 0.0735 | 0.0511 |
1.0067 | 1960 | 0.0609 | - |
1.0072 | 1970 | 0.0703 | - |
1.0077 | 1980 | 0.0599 | - |
1.0082 | 1990 | 0.0593 | - |
1.0087 | 2000 | 0.0673 | - |
1.0092 | 2010 | 0.0627 | - |
1.0097 | 2020 | 0.0579 | - |
1.0102 | 2030 | 0.0679 | - |
1.0107 | 2040 | 0.063 | - |
1.0112 | 2050 | 0.0558 | - |
1.0117 | 2060 | 0.0548 | - |
1.0122 | 2070 | 0.0656 | - |
1.0127 | 2080 | 0.0606 | - |
1.0132 | 2090 | 0.0492 | - |
1.0137 | 2100 | 0.0549 | 0.0577 |
1.0142 | 2110 | 0.0631 | - |
1.0147 | 2120 | 0.0637 | - |
1.0152 | 2130 | 0.0534 | - |
1.0157 | 2140 | 0.0469 | - |
1.0162 | 2150 | 0.0581 | - |
1.0167 | 2160 | 0.0427 | - |
1.0172 | 2170 | 0.0532 | - |
1.0177 | 2180 | 0.0506 | - |
1.0182 | 2190 | 0.0516 | - |
1.0187 | 2200 | 0.0534 | - |
1.0192 | 2210 | 0.066 | - |
1.0197 | 2220 | 0.0484 | - |
1.0202 | 2230 | 0.0427 | - |
1.0207 | 2240 | 0.0586 | - |
1.0212 | 2250 | 0.0449 | 0.0547 |
1.0217 | 2260 | 0.0449 | - |
1.0222 | 2270 | 0.0529 | - |
1.0227 | 2280 | 0.0511 | - |
1.0232 | 2290 | 0.0469 | - |
1.0237 | 2300 | 0.0418 | - |
1.0242 | 2310 | 0.0586 | - |
1.0247 | 2320 | 0.0589 | - |
1.0252 | 2330 | 0.0551 | - |
1.0257 | 2340 | 0.0458 | - |
1.0262 | 2350 | 0.0563 | - |
1.0267 | 2360 | 0.0414 | - |
1.0272 | 2370 | 0.0532 | - |
1.0277 | 2380 | 0.0553 | - |
1.0282 | 2390 | 0.0516 | - |
1.0287 | 2400 | 0.0517 | 0.0548 |
1.0292 | 2410 | 0.0576 | - |
1.0297 | 2420 | 0.052 | - |
1.0302 | 2430 | 0.0501 | - |
1.0307 | 2440 | 0.0415 | - |
1.0312 | 2450 | 0.0523 | - |
1.0317 | 2460 | 0.0635 | - |
1.0322 | 2470 | 0.0601 | - |
1.0327 | 2480 | 0.045 | - |
1.0332 | 2490 | 0.0468 | - |
1.0337 | 2500 | 0.0381 | - |
1.0342 | 2510 | 0.0543 | - |
1.0347 | 2520 | 0.0469 | - |
1.0352 | 2530 | 0.0479 | - |
1.0357 | 2540 | 0.0489 | - |
1.0362 | 2550 | 0.0421 | 0.0591 |
1.0367 | 2560 | 0.0512 | - |
1.0372 | 2570 | 0.0378 | - |
1.0377 | 2580 | 0.0356 | - |
1.0382 | 2590 | 0.0354 | - |
1.0387 | 2600 | 0.053 | - |
1.0392 | 2610 | 0.0467 | - |
1.0397 | 2620 | 0.0479 | - |
1.0402 | 2630 | 0.0521 | - |
1.0407 | 2640 | 0.0418 | - |
1.0412 | 2650 | 0.0414 | - |
1.0417 | 2660 | 0.0524 | - |
1.0422 | 2670 | 0.0363 | - |
1.0427 | 2680 | 0.034 | - |
1.0432 | 2690 | 0.0335 | - |
1.0437 | 2700 | 0.0351 | 0.0551 |
1.0442 | 2710 | 0.0382 | - |
1.0447 | 2720 | 0.0415 | - |
1.0452 | 2730 | 0.0346 | - |
1.0457 | 2740 | 0.0401 | - |
1.0462 | 2750 | 0.0314 | - |
1.0467 | 2760 | 0.0364 | - |
1.0472 | 2770 | 0.0319 | - |
1.0477 | 2780 | 0.034 | - |
1.0482 | 2790 | 0.0425 | - |
1.0487 | 2800 | 0.0317 | - |
1.0492 | 2810 | 0.0265 | - |
1.0497 | 2820 | 0.0334 | - |
1.0502 | 2830 | 0.0226 | - |
1.0507 | 2840 | 0.0284 | - |
1.0512 | 2850 | 0.0368 | 0.0529 |
1.0517 | 2860 | 0.0317 | - |
1.0522 | 2870 | 0.027 | - |
1.0527 | 2880 | 0.0305 | - |
1.0532 | 2890 | 0.036 | - |
1.0537 | 2900 | 0.03 | - |
1.0542 | 2910 | 0.0285 | - |
1.0547 | 2920 | 0.0282 | - |
1.0552 | 2930 | 0.0327 | - |
1.0557 | 2940 | 0.0279 | - |
1.0562 | 2950 | 0.0268 | - |
1.0567 | 2960 | 0.0255 | - |
1.0572 | 2970 | 0.0241 | - |
1.0577 | 2980 | 0.0341 | - |
1.0582 | 2990 | 0.0271 | - |
1.0587 | 3000 | 0.0257 | 0.0558 |
1.0592 | 3010 | 0.0254 | - |
1.0597 | 3020 | 0.0268 | - |
1.0602 | 3030 | 0.0248 | - |
1.0607 | 3040 | 0.0318 | - |
1.0612 | 3050 | 0.033 | - |
1.0617 | 3060 | 0.0359 | - |
1.0622 | 3070 | 0.0312 | - |
1.0627 | 3080 | 0.0334 | - |
1.0632 | 3090 | 0.0329 | - |
1.0637 | 3100 | 0.0347 | - |
1.0642 | 3110 | 0.0399 | - |
1.0647 | 3120 | 0.0341 | - |
1.0652 | 3130 | 0.0394 | - |
1.0657 | 3140 | 0.0412 | - |
1.0662 | 3150 | 0.0441 | 0.0465 |
1.0667 | 3160 | 0.0393 | - |
1.0672 | 3170 | 0.0442 | - |
1.0677 | 3180 | 0.0309 | - |
1.0682 | 3190 | 0.0402 | - |
1.0687 | 3200 | 0.0381 | - |
1.0692 | 3210 | 0.0318 | - |
1.0697 | 3220 | 0.0374 | - |
1.0702 | 3230 | 0.0358 | - |
1.0707 | 3240 | 0.0367 | - |
1.0712 | 3250 | 0.038 | - |
1.0717 | 3260 | 0.0349 | - |
1.0722 | 3270 | 0.0292 | - |
1.0727 | 3280 | 0.042 | - |
1.0732 | 3290 | 0.0307 | - |
1.0737 | 3300 | 0.0385 | 0.0444 |
1.0742 | 3310 | 0.0337 | - |
1.0747 | 3320 | 0.0346 | - |
1.0752 | 3330 | 0.0412 | - |
1.0757 | 3340 | 0.0315 | - |
1.0762 | 3350 | 0.0316 | - |
1.0767 | 3360 | 0.0348 | - |
1.0772 | 3370 | 0.0362 | - |
1.0777 | 3380 | 0.0314 | - |
1.0782 | 3390 | 0.0394 | - |
1.0787 | 3400 | 0.0352 | - |
1.0792 | 3410 | 0.0296 | - |
1.0797 | 3420 | 0.0304 | - |
1.0802 | 3430 | 0.03 | - |
1.0807 | 3440 | 0.038 | - |
1.0812 | 3450 | 0.0297 | 0.0424 |
1.0817 | 3460 | 0.0393 | - |
1.0822 | 3470 | 0.0386 | - |
1.0827 | 3480 | 0.0309 | - |
1.0832 | 3490 | 0.0235 | - |
1.0837 | 3500 | 0.0297 | - |
1.0842 | 3510 | 0.0363 | - |
1.0847 | 3520 | 0.0208 | - |
1.0852 | 3530 | 0.0312 | - |
1.0857 | 3540 | 0.0271 | - |
1.0862 | 3550 | 0.0348 | - |
1.0867 | 3560 | 0.0343 | - |
1.0872 | 3570 | 0.0296 | - |
1.0877 | 3580 | 0.0348 | - |
1.0882 | 3590 | 0.0265 | - |
1.0887 | 3600 | 0.0316 | 0.0424 |
1.0892 | 3610 | 0.0291 | - |
1.0897 | 3620 | 0.0336 | - |
1.0902 | 3630 | 0.0267 | - |
1.0907 | 3640 | 0.0266 | - |
1.0912 | 3650 | 0.0291 | - |
2.0004 | 3660 | 0.0475 | - |
2.0009 | 3670 | 0.053 | - |
2.0014 | 3680 | 0.0548 | - |
2.0019 | 3690 | 0.0356 | - |
2.0024 | 3700 | 0.0429 | - |
2.0029 | 3710 | 0.062 | - |
2.0034 | 3720 | 0.037 | - |
2.0039 | 3730 | 0.0391 | - |
2.0044 | 3740 | 0.0395 | - |
2.0049 | 3750 | 0.047 | 0.0452 |
2.0054 | 3760 | 0.0414 | - |
2.0059 | 3770 | 0.043 | - |
2.0064 | 3780 | 0.0561 | - |
2.0069 | 3790 | 0.0493 | - |
2.0074 | 3800 | 0.0443 | - |
2.0079 | 3810 | 0.0442 | - |
2.0084 | 3820 | 0.0469 | - |
2.0089 | 3830 | 0.0414 | - |
2.0094 | 3840 | 0.0446 | - |
2.0099 | 3850 | 0.0443 | - |
2.0104 | 3860 | 0.0503 | - |
2.0109 | 3870 | 0.0394 | - |
2.0114 | 3880 | 0.0392 | - |
2.0119 | 3890 | 0.0402 | - |
2.0124 | 3900 | 0.0458 | 0.0518 |
2.0129 | 3910 | 0.0516 | - |
2.0134 | 3920 | 0.0364 | - |
2.0139 | 3930 | 0.037 | - |
2.0144 | 3940 | 0.0429 | - |
2.0149 | 3950 | 0.043 | - |
2.0154 | 3960 | 0.0413 | - |
2.0159 | 3970 | 0.041 | - |
2.0164 | 3980 | 0.0447 | - |
2.0169 | 3990 | 0.0416 | - |
2.0174 | 4000 | 0.0416 | - |
2.0179 | 4010 | 0.0373 | - |
2.0184 | 4020 | 0.042 | - |
2.0189 | 4030 | 0.0409 | - |
2.0194 | 4040 | 0.0454 | - |
2.0199 | 4050 | 0.0347 | 0.0562 |
2.0204 | 4060 | 0.0385 | - |
2.0209 | 4070 | 0.0388 | - |
2.0214 | 4080 | 0.0395 | - |
2.0219 | 4090 | 0.0332 | - |
2.0224 | 4100 | 0.0438 | - |
2.0229 | 4110 | 0.0468 | - |
2.0234 | 4120 | 0.0359 | - |
2.0239 | 4130 | 0.0488 | - |
2.0244 | 4140 | 0.0394 | - |
2.0249 | 4150 | 0.0349 | - |
2.0254 | 4160 | 0.0427 | - |
2.0259 | 4170 | 0.0417 | - |
2.0264 | 4180 | 0.0423 | - |
2.0269 | 4190 | 0.0375 | - |
2.0274 | 4200 | 0.0409 | 0.0547 |
2.0279 | 4210 | 0.036 | - |
2.0284 | 4220 | 0.0417 | - |
2.0289 | 4230 | 0.0394 | - |
2.0294 | 4240 | 0.0335 | - |
2.0299 | 4250 | 0.0451 | - |
2.0304 | 4260 | 0.0387 | - |
2.0309 | 4270 | 0.0336 | - |
2.0314 | 4280 | 0.0448 | - |
2.0319 | 4290 | 0.0396 | - |
2.0324 | 4300 | 0.0337 | - |
2.0329 | 4310 | 0.0438 | - |
2.0334 | 4320 | 0.0366 | - |
2.0339 | 4330 | 0.0396 | - |
2.0344 | 4340 | 0.038 | - |
2.0349 | 4350 | 0.0403 | 0.0529 |
2.0354 | 4360 | 0.0427 | - |
2.0359 | 4370 | 0.0461 | - |
2.0364 | 4380 | 0.0439 | - |
2.0369 | 4390 | 0.0328 | - |
2.0374 | 4400 | 0.0422 | - |
2.0379 | 4410 | 0.0387 | - |
2.0384 | 4420 | 0.0385 | - |
2.0389 | 4430 | 0.0414 | - |
2.0394 | 4440 | 0.034 | - |
2.0399 | 4450 | 0.0351 | - |
2.0404 | 4460 | 0.0364 | - |
2.0409 | 4470 | 0.038 | - |
2.0414 | 4480 | 0.0357 | - |
2.0419 | 4490 | 0.035 | - |
2.0424 | 4500 | 0.0518 | 0.0455 |
2.0429 | 4510 | 0.0399 | - |
2.0434 | 4520 | 0.0315 | - |
2.0439 | 4530 | 0.0311 | - |
2.0444 | 4540 | 0.0252 | - |
2.0449 | 4550 | 0.0291 | - |
2.0454 | 4560 | 0.0264 | - |
2.0459 | 4570 | 0.0212 | - |
2.0464 | 4580 | 0.0262 | - |
2.0469 | 4590 | 0.0248 | - |
2.0474 | 4600 | 0.0246 | - |
2.0479 | 4610 | 0.0222 | - |
2.0484 | 4620 | 0.0277 | - |
2.0489 | 4630 | 0.0177 | - |
2.0494 | 4640 | 0.0221 | - |
2.0499 | 4650 | 0.03 | 0.0527 |
2.0504 | 4660 | 0.0191 | - |
2.0509 | 4670 | 0.0168 | - |
2.0514 | 4680 | 0.0211 | - |
2.0519 | 4690 | 0.0237 | - |
2.0524 | 4700 | 0.0272 | - |
2.0529 | 4710 | 0.0213 | - |
2.0534 | 4720 | 0.0247 | - |
2.0539 | 4730 | 0.023 | - |
2.0544 | 4740 | 0.023 | - |
2.0549 | 4750 | 0.0233 | - |
2.0554 | 4760 | 0.0231 | - |
2.0559 | 4770 | 0.0203 | - |
2.0564 | 4780 | 0.0231 | - |
2.0569 | 4790 | 0.0194 | - |
2.0574 | 4800 | 0.0222 | 0.0464 |
2.0579 | 4810 | 0.0227 | - |
2.0584 | 4820 | 0.0256 | - |
2.0589 | 4830 | 0.0169 | - |
2.0594 | 4840 | 0.0209 | - |
2.0599 | 4850 | 0.0203 | - |
2.0604 | 4860 | 0.0264 | - |
2.0609 | 4870 | 0.0239 | - |
2.0614 | 4880 | 0.0282 | - |
2.0619 | 4890 | 0.0278 | - |
2.0624 | 4900 | 0.0175 | - |
2.0629 | 4910 | 0.0234 | - |
2.0634 | 4920 | 0.0253 | - |
2.0639 | 4930 | 0.0335 | - |
2.0644 | 4940 | 0.0261 | - |
2.0649 | 4950 | 0.0274 | 0.0434 |
2.0654 | 4960 | 0.0306 | - |
2.0659 | 4970 | 0.0253 | - |
2.0664 | 4980 | 0.0303 | - |
2.0669 | 4990 | 0.0335 | - |
2.0674 | 5000 | 0.0333 | - |
2.0679 | 5010 | 0.0321 | - |
2.0684 | 5020 | 0.0336 | - |
2.0689 | 5030 | 0.0266 | - |
2.0694 | 5040 | 0.0295 | - |
2.0699 | 5050 | 0.0319 | - |
2.0704 | 5060 | 0.0371 | - |
2.0709 | 5070 | 0.0284 | - |
2.0714 | 5080 | 0.0266 | - |
2.0719 | 5090 | 0.0259 | - |
2.0724 | 5100 | 0.0292 | 0.0432 |
2.0729 | 5110 | 0.0243 | - |
2.0734 | 5120 | 0.0283 | - |
2.0739 | 5130 | 0.0326 | - |
2.0744 | 5140 | 0.0268 | - |
2.0749 | 5150 | 0.0282 | - |
2.0754 | 5160 | 0.0225 | - |
2.0759 | 5170 | 0.0271 | - |
2.0764 | 5180 | 0.0286 | - |
2.0769 | 5190 | 0.0319 | - |
2.0774 | 5200 | 0.0317 | - |
2.0779 | 5210 | 0.0265 | - |
2.0784 | 5220 | 0.027 | - |
2.0789 | 5230 | 0.0287 | - |
2.0794 | 5240 | 0.0387 | - |
2.0799 | 5250 | 0.0274 | 0.0420 |
2.0804 | 5260 | 0.025 | - |
2.0809 | 5270 | 0.0289 | - |
2.0814 | 5280 | 0.0293 | - |
2.0819 | 5290 | 0.0224 | - |
2.0824 | 5300 | 0.03 | - |
2.0829 | 5310 | 0.0267 | - |
2.0834 | 5320 | 0.0299 | - |
2.0839 | 5330 | 0.0264 | - |
2.0844 | 5340 | 0.0242 | - |
2.0849 | 5350 | 0.0212 | - |
2.0854 | 5360 | 0.0262 | - |
2.0859 | 5370 | 0.0208 | - |
2.0864 | 5380 | 0.0262 | - |
2.0869 | 5390 | 0.025 | - |
2.0874 | 5400 | 0.0264 | 0.0431 |
2.0879 | 5410 | 0.0279 | - |
2.0884 | 5420 | 0.0245 | - |
2.0889 | 5430 | 0.0213 | - |
2.0894 | 5440 | 0.028 | - |
2.0899 | 5450 | 0.0231 | - |
2.0904 | 5460 | 0.0264 | - |
2.0909 | 5470 | 0.0241 | - |
3.0001 | 5480 | 0.0359 | - |
3.0006 | 5490 | 0.042 | - |
3.0011 | 5500 | 0.0344 | - |
3.0016 | 5510 | 0.0423 | - |
3.0021 | 5520 | 0.0318 | - |
3.0026 | 5530 | 0.0329 | - |
3.0031 | 5540 | 0.0395 | - |
3.0036 | 5550 | 0.0384 | 0.0466 |
3.0041 | 5560 | 0.0414 | - |
3.0046 | 5570 | 0.04 | - |
3.0051 | 5580 | 0.0418 | - |
3.0056 | 5590 | 0.0274 | - |
3.0061 | 5600 | 0.038 | - |
3.0066 | 5610 | 0.0415 | - |
3.0071 | 5620 | 0.0257 | - |
3.0076 | 5630 | 0.0469 | - |
3.0081 | 5640 | 0.0338 | - |
3.0086 | 5650 | 0.034 | - |
3.0091 | 5660 | 0.0397 | - |
3.0096 | 5670 | 0.0388 | - |
3.0101 | 5680 | 0.039 | - |
3.0106 | 5690 | 0.0364 | - |
3.0111 | 5700 | 0.0316 | 0.0493 |
3.0116 | 5710 | 0.0473 | - |
3.0121 | 5720 | 0.0417 | - |
3.0126 | 5730 | 0.0352 | - |
3.0131 | 5740 | 0.0386 | - |
3.0136 | 5750 | 0.0348 | - |
3.0141 | 5760 | 0.0351 | - |
3.0146 | 5770 | 0.0341 | - |
3.0151 | 5780 | 0.0329 | - |
3.0156 | 5790 | 0.0296 | - |
3.0161 | 5800 | 0.0399 | - |
3.0166 | 5810 | 0.032 | - |
3.0171 | 5820 | 0.0296 | - |
3.0176 | 5830 | 0.0334 | - |
3.0181 | 5840 | 0.0323 | - |
3.0186 | 5850 | 0.0322 | 0.0447 |
3.0191 | 5860 | 0.0329 | - |
3.0196 | 5870 | 0.034 | - |
3.0201 | 5880 | 0.0407 | - |
3.0206 | 5890 | 0.0384 | - |
3.0211 | 5900 | 0.033 | - |
3.0216 | 5910 | 0.0392 | - |
3.0221 | 5920 | 0.0418 | - |
3.0226 | 5930 | 0.0257 | - |
3.0231 | 5940 | 0.0342 | - |
3.0236 | 5950 | 0.0356 | - |
3.0241 | 5960 | 0.0308 | - |
3.0246 | 5970 | 0.0344 | - |
3.0251 | 5980 | 0.0388 | - |
3.0256 | 5990 | 0.0475 | - |
3.0261 | 6000 | 0.036 | 0.0432 |
3.0266 | 6010 | 0.0315 | - |
3.0271 | 6020 | 0.0282 | - |
3.0276 | 6030 | 0.0362 | - |
3.0281 | 6040 | 0.0348 | - |
3.0286 | 6050 | 0.0352 | - |
3.0291 | 6060 | 0.0359 | - |
3.0296 | 6070 | 0.0285 | - |
3.0301 | 6080 | 0.0374 | - |
3.0306 | 6090 | 0.0231 | - |
3.0311 | 6100 | 0.0378 | - |
3.0316 | 6110 | 0.0381 | - |
3.0321 | 6120 | 0.0327 | - |
3.0326 | 6130 | 0.0349 | - |
3.0331 | 6140 | 0.0341 | - |
3.0336 | 6150 | 0.0265 | 0.0477 |
3.0341 | 6160 | 0.0288 | - |
3.0346 | 6170 | 0.0313 | - |
3.0351 | 6180 | 0.0327 | - |
3.0356 | 6190 | 0.0346 | - |
3.0361 | 6200 | 0.033 | - |
3.0366 | 6210 | 0.0348 | - |
3.0371 | 6220 | 0.0348 | - |
3.0376 | 6230 | 0.0314 | - |
3.0381 | 6240 | 0.0296 | - |
3.0386 | 6250 | 0.0301 | - |
3.0391 | 6260 | 0.0344 | - |
3.0396 | 6270 | 0.0263 | - |
3.0401 | 6280 | 0.0357 | - |
3.0406 | 6290 | 0.0247 | - |
3.0411 | 6300 | 0.0277 | 0.0495 |
3.0416 | 6310 | 0.0242 | - |
3.0421 | 6320 | 0.0262 | - |
3.0426 | 6330 | 0.0257 | - |
3.0431 | 6340 | 0.0262 | - |
3.0436 | 6350 | 0.0272 | - |
3.0441 | 6360 | 0.0257 | - |
3.0446 | 6370 | 0.0258 | - |
3.0451 | 6380 | 0.0225 | - |
3.0456 | 6390 | 0.0202 | - |
3.0461 | 6400 | 0.0214 | - |
3.0466 | 6410 | 0.0248 | - |
3.0471 | 6420 | 0.0195 | - |
3.0476 | 6430 | 0.0218 | - |
3.0481 | 6440 | 0.024 | - |
3.0486 | 6450 | 0.0297 | 0.0439 |
3.0491 | 6460 | 0.0219 | - |
3.0496 | 6470 | 0.0256 | - |
3.0501 | 6480 | 0.0189 | - |
3.0506 | 6490 | 0.019 | - |
3.0511 | 6500 | 0.0235 | - |
3.0516 | 6510 | 0.0196 | - |
3.0521 | 6520 | 0.0192 | - |
3.0526 | 6530 | 0.0195 | - |
3.0531 | 6540 | 0.0189 | - |
3.0536 | 6550 | 0.0211 | - |
3.0541 | 6560 | 0.0224 | - |
3.0546 | 6570 | 0.0184 | - |
3.0551 | 6580 | 0.0196 | - |
3.0556 | 6590 | 0.0169 | - |
3.0561 | 6600 | 0.0257 | 0.0436 |
3.0566 | 6610 | 0.0164 | - |
3.0571 | 6620 | 0.018 | - |
3.0576 | 6630 | 0.0167 | - |
3.0581 | 6640 | 0.0194 | - |
3.0586 | 6650 | 0.0202 | - |
3.0591 | 6660 | 0.0163 | - |
3.0596 | 6670 | 0.0186 | - |
3.0601 | 6680 | 0.0193 | - |
3.0606 | 6690 | 0.0186 | - |
3.0611 | 6700 | 0.02 | - |
3.0616 | 6710 | 0.02 | - |
3.0621 | 6720 | 0.0198 | - |
3.0626 | 6730 | 0.0252 | - |
3.0631 | 6740 | 0.0183 | - |
3.0636 | 6750 | 0.0173 | 0.0454 |
3.0641 | 6760 | 0.0181 | - |
3.0646 | 6770 | 0.0246 | - |
3.0651 | 6780 | 0.0204 | - |
3.0656 | 6790 | 0.0241 | - |
3.0661 | 6800 | 0.0357 | - |
3.0666 | 6810 | 0.0268 | - |
3.0671 | 6820 | 0.0201 | - |
3.0676 | 6830 | 0.0232 | - |
3.0681 | 6840 | 0.0278 | - |
3.0686 | 6850 | 0.0232 | - |
3.0691 | 6860 | 0.0326 | - |
3.0696 | 6870 | 0.0267 | - |
3.0701 | 6880 | 0.029 | - |
3.0706 | 6890 | 0.0209 | - |
3.0711 | 6900 | 0.0236 | 0.0427 |
3.0716 | 6910 | 0.0228 | - |
3.0721 | 6920 | 0.0195 | - |
3.0726 | 6930 | 0.022 | - |
3.0731 | 6940 | 0.0304 | - |
3.0736 | 6950 | 0.0296 | - |
3.0741 | 6960 | 0.0238 | - |
3.0746 | 6970 | 0.0275 | - |
3.0751 | 6980 | 0.0234 | - |
3.0756 | 6990 | 0.0222 | - |
3.0761 | 7000 | 0.0222 | - |
3.0766 | 7010 | 0.0306 | - |
3.0771 | 7020 | 0.0271 | - |
3.0776 | 7030 | 0.0244 | - |
3.0781 | 7040 | 0.0268 | - |
3.0786 | 7050 | 0.0336 | 0.0419 |
3.0791 | 7060 | 0.0245 | - |
3.0796 | 7070 | 0.0202 | - |
3.0801 | 7080 | 0.022 | - |
3.0806 | 7090 | 0.0253 | - |
3.0811 | 7100 | 0.021 | - |
3.0816 | 7110 | 0.0233 | - |
3.0821 | 7120 | 0.0238 | - |
3.0826 | 7130 | 0.0241 | - |
3.0831 | 7140 | 0.0244 | - |
3.0836 | 7150 | 0.025 | - |
3.0841 | 7160 | 0.0279 | - |
3.0846 | 7170 | 0.0234 | - |
3.0851 | 7180 | 0.0235 | - |
3.0856 | 7190 | 0.0186 | - |
3.0861 | 7200 | 0.0191 | 0.0423 |
3.0866 | 7210 | 0.0269 | - |
3.0871 | 7220 | 0.0288 | - |
3.0876 | 7230 | 0.024 | - |
3.0881 | 7240 | 0.0217 | - |
3.0886 | 7250 | 0.0244 | - |
3.0891 | 7260 | 0.0226 | - |
3.0896 | 7270 | 0.0172 | - |
3.0901 | 7280 | 0.0211 | - |
3.0906 | 7290 | 0.0214 | - |
3.0911 | 7300 | 0.0208 | - |
4.0003 | 7310 | 0.033 | - |
4.0008 | 7320 | 0.0363 | - |
4.0013 | 7330 | 0.0401 | - |
4.0018 | 7340 | 0.0294 | - |
4.0023 | 7350 | 0.0387 | 0.0425 |
4.0028 | 7360 | 0.0258 | - |
4.0033 | 7370 | 0.0296 | - |
4.0038 | 7380 | 0.0432 | - |
4.0043 | 7390 | 0.0331 | - |
4.0048 | 7400 | 0.033 | - |
4.0053 | 7410 | 0.0274 | - |
4.0058 | 7420 | 0.0294 | - |
4.0063 | 7430 | 0.0377 | - |
4.0068 | 7440 | 0.0366 | - |
4.0073 | 7450 | 0.0239 | - |
4.0078 | 7460 | 0.0363 | - |
4.0083 | 7470 | 0.0267 | - |
4.0088 | 7480 | 0.0288 | - |
4.0093 | 7490 | 0.0354 | - |
4.0098 | 7500 | 0.0424 | 0.0452 |
4.0103 | 7510 | 0.0319 | - |
4.0108 | 7520 | 0.0375 | - |
4.0113 | 7530 | 0.0371 | - |
4.0118 | 7540 | 0.0363 | - |
4.0123 | 7550 | 0.0296 | - |
4.0128 | 7560 | 0.0363 | - |
4.0133 | 7570 | 0.034 | - |
4.0138 | 7580 | 0.0288 | - |
4.0143 | 7590 | 0.0341 | - |
4.0148 | 7600 | 0.0261 | - |
4.0153 | 7610 | 0.0321 | - |
4.0158 | 7620 | 0.0261 | - |
4.0163 | 7630 | 0.0364 | - |
4.0168 | 7640 | 0.0288 | - |
4.0173 | 7650 | 0.0309 | 0.0479 |
4.0178 | 7660 | 0.0306 | - |
4.0183 | 7670 | 0.0286 | - |
4.0188 | 7680 | 0.0255 | - |
4.0193 | 7690 | 0.0409 | - |
4.0198 | 7700 | 0.0363 | - |
4.0203 | 7710 | 0.0317 | - |
4.0208 | 7720 | 0.0335 | - |
4.0213 | 7730 | 0.0245 | - |
4.0218 | 7740 | 0.0316 | - |
4.0223 | 7750 | 0.0344 | - |
4.0228 | 7760 | 0.02 | - |
4.0233 | 7770 | 0.0318 | - |
4.0238 | 7780 | 0.0318 | - |
4.0243 | 7790 | 0.0306 | - |
4.0248 | 7800 | 0.0269 | 0.0437 |
4.0253 | 7810 | 0.0227 | - |
4.0258 | 7820 | 0.033 | - |
4.0263 | 7830 | 0.0278 | - |
4.0268 | 7840 | 0.0305 | - |
4.0273 | 7850 | 0.028 | - |
4.0278 | 7860 | 0.0278 | - |
4.0283 | 7870 | 0.0259 | - |
4.0288 | 7880 | 0.0272 | - |
4.0293 | 7890 | 0.0293 | - |
4.0298 | 7900 | 0.0344 | - |
4.0303 | 7910 | 0.033 | - |
4.0308 | 7920 | 0.0356 | - |
4.0313 | 7930 | 0.0266 | - |
4.0318 | 7940 | 0.0313 | - |
4.0323 | 7950 | 0.0279 | 0.0499 |
4.0328 | 7960 | 0.0278 | - |
4.0333 | 7970 | 0.0309 | - |
4.0338 | 7980 | 0.026 | - |
4.0343 | 7990 | 0.0315 | - |
4.0348 | 8000 | 0.0297 | - |
4.0353 | 8010 | 0.0282 | - |
4.0358 | 8020 | 0.0261 | - |
4.0363 | 8030 | 0.0284 | - |
4.0368 | 8040 | 0.0328 | - |
4.0373 | 8050 | 0.0282 | - |
4.0378 | 8060 | 0.0244 | - |
4.0383 | 8070 | 0.0301 | - |
4.0388 | 8080 | 0.0299 | - |
4.0393 | 8090 | 0.028 | - |
4.0398 | 8100 | 0.0323 | 0.0494 |
4.0403 | 8110 | 0.0266 | - |
4.0408 | 8120 | 0.0252 | - |
4.0413 | 8130 | 0.0229 | - |
4.0418 | 8140 | 0.0216 | - |
4.0423 | 8150 | 0.0226 | - |
4.0428 | 8160 | 0.0255 | - |
4.0433 | 8170 | 0.0273 | - |
4.0438 | 8180 | 0.0225 | - |
4.0443 | 8190 | 0.0195 | - |
4.0448 | 8200 | 0.019 | - |
4.0453 | 8210 | 0.0208 | - |
4.0458 | 8220 | 0.0211 | - |
4.0463 | 8230 | 0.022 | - |
4.0468 | 8240 | 0.0237 | - |
4.0473 | 8250 | 0.0217 | 0.0442 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.2.2
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for LucaZilli/arctic-m-long-q-oai-v1
Base model
Snowflake/snowflake-arctic-embed-m-long