SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-long

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-long on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m-long
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/arctic-m-long-q-oai-v1")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

json

  • Dataset: json
  • Columns: sentence1, sentence2, score, and split
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Columns: sentence1, sentence2, score, and split
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 4.000000000000001e-06
  • num_train_epochs: 1
  • max_steps: 20000
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4.000000000000001e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: 20000
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0005 10 0.0654 -
0.001 20 0.0806 -
0.0015 30 0.0963 -
0.002 40 0.0865 -
0.0025 50 0.0798 -
0.003 60 0.0862 -
0.0035 70 0.084 -
0.004 80 0.0843 -
0.0045 90 0.0819 -
0.005 100 0.0861 -
0.0055 110 0.092 -
0.006 120 0.095 -
0.0065 130 0.0829 -
0.007 140 0.0759 -
0.0075 150 0.0749 0.0904
0.008 160 0.0667 -
0.0085 170 0.0845 -
0.009 180 0.0803 -
0.0095 190 0.0895 -
0.01 200 0.0805 -
0.0105 210 0.0808 -
0.011 220 0.0699 -
0.0115 230 0.0718 -
0.012 240 0.0817 -
0.0125 250 0.0687 -
0.013 260 0.0877 -
0.0135 270 0.0756 -
0.014 280 0.076 -
0.0145 290 0.0717 -
0.015 300 0.0822 0.0855
0.0155 310 0.0756 -
0.016 320 0.0697 -
0.0165 330 0.0812 -
0.017 340 0.0637 -
0.0175 350 0.0672 -
0.018 360 0.067 -
0.0185 370 0.0658 -
0.019 380 0.0694 -
0.0195 390 0.0664 -
0.02 400 0.075 -
0.0205 410 0.0662 -
0.021 420 0.0828 -
0.0215 430 0.0707 -
0.022 440 0.0748 -
0.0225 450 0.0762 0.0788
0.023 460 0.0724 -
0.0235 470 0.0621 -
0.024 480 0.0767 -
0.0245 490 0.0576 -
0.025 500 0.061 -
0.0255 510 0.0711 -
0.026 520 0.0742 -
0.0265 530 0.0737 -
0.027 540 0.074 -
0.0275 550 0.0723 -
0.028 560 0.0781 -
0.0285 570 0.0628 -
0.029 580 0.0636 -
0.0295 590 0.0658 -
0.03 600 0.0771 0.0794
0.0305 610 0.0832 -
0.031 620 0.0737 -
0.0315 630 0.0636 -
0.032 640 0.0825 -
0.0325 650 0.0822 -
0.033 660 0.0629 -
0.0335 670 0.0751 -
0.034 680 0.0823 -
0.0345 690 0.0553 -
0.035 700 0.0717 -
0.0355 710 0.0681 -
0.036 720 0.068 -
0.0365 730 0.065 -
0.037 740 0.0572 -
0.0375 750 0.0634 0.0766
0.038 760 0.0593 -
0.0385 770 0.0586 -
0.039 780 0.0677 -
0.0395 790 0.0622 -
0.04 800 0.087 -
0.0405 810 0.0888 -
0.041 820 0.0708 -
0.0415 830 0.0952 -
0.042 840 0.079 -
0.0425 850 0.0819 -
0.043 860 0.0748 -
0.0435 870 0.0633 -
0.044 880 0.0649 -
0.0445 890 0.0734 -
0.045 900 0.0514 0.0708
0.0455 910 0.0529 -
0.046 920 0.047 -
0.0465 930 0.0466 -
0.047 940 0.0436 -
0.0475 950 0.0493 -
0.048 960 0.0492 -
0.0485 970 0.0413 -
0.049 980 0.0464 -
0.0495 990 0.0425 -
0.05 1000 0.0454 -
0.0505 1010 0.0506 -
0.051 1020 0.0378 -
0.0515 1030 0.0379 -
0.052 1040 0.0462 -
0.0525 1050 0.0443 0.0685
0.053 1060 0.0419 -
0.0535 1070 0.05 -
0.054 1080 0.042 -
0.0545 1090 0.0437 -
0.055 1100 0.044 -
0.0555 1110 0.0387 -
0.056 1120 0.0484 -
0.0565 1130 0.0457 -
0.057 1140 0.0343 -
0.0575 1150 0.0431 -
0.058 1160 0.0397 -
0.0585 1170 0.0394 -
0.059 1180 0.0427 -
0.0595 1190 0.0469 -
0.06 1200 0.0392 0.0700
0.0605 1210 0.0492 -
0.061 1220 0.0398 -
0.0615 1230 0.0434 -
0.062 1240 0.042 -
0.0625 1250 0.0596 -
0.063 1260 0.0451 -
0.0635 1270 0.0455 -
0.064 1280 0.0554 -
0.0645 1290 0.0431 -
0.065 1300 0.0523 -
0.0655 1310 0.0531 -
0.066 1320 0.0493 -
0.0665 1330 0.0421 -
0.067 1340 0.0423 -
0.0675 1350 0.0704 0.0628
0.068 1360 0.0647 -
0.0685 1370 0.0478 -
0.069 1380 0.0534 -
0.0695 1390 0.0502 -
0.07 1400 0.0538 -
0.0705 1410 0.0688 -
0.071 1420 0.0632 -
0.0715 1430 0.0482 -
0.072 1440 0.0576 -
0.0725 1450 0.043 -
0.073 1460 0.0397 -
0.0735 1470 0.0553 -
0.074 1480 0.0536 -
0.0745 1490 0.045 -
0.075 1500 0.0464 0.0573
0.0755 1510 0.0481 -
0.076 1520 0.049 -
0.0765 1530 0.0554 -
0.077 1540 0.0555 -
0.0775 1550 0.048 -
0.078 1560 0.0491 -
0.0785 1570 0.046 -
0.079 1580 0.0535 -
0.0795 1590 0.0373 -
0.08 1600 0.0494 -
0.0805 1610 0.0413 -
0.081 1620 0.0519 -
0.0815 1630 0.0462 -
0.082 1640 0.0473 -
0.0825 1650 0.0382 0.0529
0.083 1660 0.0326 -
0.0835 1670 0.0522 -
0.084 1680 0.042 -
0.0845 1690 0.0478 -
0.085 1700 0.0352 -
0.0855 1710 0.0448 -
0.086 1720 0.0424 -
0.0865 1730 0.0437 -
0.087 1740 0.0458 -
0.0875 1750 0.041 -
0.088 1760 0.0365 -
0.0885 1770 0.0353 -
0.089 1780 0.0403 -
0.0895 1790 0.0352 -
0.09 1800 0.0515 0.0495
0.0905 1810 0.0302 -
0.091 1820 0.0342 -
1.0002 1830 0.0528 -
1.0007 1840 0.0661 -
1.0012 1850 0.064 -
1.0017 1860 0.0717 -
1.0022 1870 0.0507 -
1.0027 1880 0.0584 -
1.0032 1890 0.0577 -
1.0037 1900 0.0549 -
1.0042 1910 0.0577 -
1.0047 1920 0.061 -
1.0052 1930 0.0496 -
1.0057 1940 0.0607 -
1.0062 1950 0.0735 0.0511
1.0067 1960 0.0609 -
1.0072 1970 0.0703 -
1.0077 1980 0.0599 -
1.0082 1990 0.0593 -
1.0087 2000 0.0673 -
1.0092 2010 0.0627 -
1.0097 2020 0.0579 -
1.0102 2030 0.0679 -
1.0107 2040 0.063 -
1.0112 2050 0.0558 -
1.0117 2060 0.0548 -
1.0122 2070 0.0656 -
1.0127 2080 0.0606 -
1.0132 2090 0.0492 -
1.0137 2100 0.0549 0.0577
1.0142 2110 0.0631 -
1.0147 2120 0.0637 -
1.0152 2130 0.0534 -
1.0157 2140 0.0469 -
1.0162 2150 0.0581 -
1.0167 2160 0.0427 -
1.0172 2170 0.0532 -
1.0177 2180 0.0506 -
1.0182 2190 0.0516 -
1.0187 2200 0.0534 -
1.0192 2210 0.066 -
1.0197 2220 0.0484 -
1.0202 2230 0.0427 -
1.0207 2240 0.0586 -
1.0212 2250 0.0449 0.0547
1.0217 2260 0.0449 -
1.0222 2270 0.0529 -
1.0227 2280 0.0511 -
1.0232 2290 0.0469 -
1.0237 2300 0.0418 -
1.0242 2310 0.0586 -
1.0247 2320 0.0589 -
1.0252 2330 0.0551 -
1.0257 2340 0.0458 -
1.0262 2350 0.0563 -
1.0267 2360 0.0414 -
1.0272 2370 0.0532 -
1.0277 2380 0.0553 -
1.0282 2390 0.0516 -
1.0287 2400 0.0517 0.0548
1.0292 2410 0.0576 -
1.0297 2420 0.052 -
1.0302 2430 0.0501 -
1.0307 2440 0.0415 -
1.0312 2450 0.0523 -
1.0317 2460 0.0635 -
1.0322 2470 0.0601 -
1.0327 2480 0.045 -
1.0332 2490 0.0468 -
1.0337 2500 0.0381 -
1.0342 2510 0.0543 -
1.0347 2520 0.0469 -
1.0352 2530 0.0479 -
1.0357 2540 0.0489 -
1.0362 2550 0.0421 0.0591
1.0367 2560 0.0512 -
1.0372 2570 0.0378 -
1.0377 2580 0.0356 -
1.0382 2590 0.0354 -
1.0387 2600 0.053 -
1.0392 2610 0.0467 -
1.0397 2620 0.0479 -
1.0402 2630 0.0521 -
1.0407 2640 0.0418 -
1.0412 2650 0.0414 -
1.0417 2660 0.0524 -
1.0422 2670 0.0363 -
1.0427 2680 0.034 -
1.0432 2690 0.0335 -
1.0437 2700 0.0351 0.0551
1.0442 2710 0.0382 -
1.0447 2720 0.0415 -
1.0452 2730 0.0346 -
1.0457 2740 0.0401 -
1.0462 2750 0.0314 -
1.0467 2760 0.0364 -
1.0472 2770 0.0319 -
1.0477 2780 0.034 -
1.0482 2790 0.0425 -
1.0487 2800 0.0317 -
1.0492 2810 0.0265 -
1.0497 2820 0.0334 -
1.0502 2830 0.0226 -
1.0507 2840 0.0284 -
1.0512 2850 0.0368 0.0529
1.0517 2860 0.0317 -
1.0522 2870 0.027 -
1.0527 2880 0.0305 -
1.0532 2890 0.036 -
1.0537 2900 0.03 -
1.0542 2910 0.0285 -
1.0547 2920 0.0282 -
1.0552 2930 0.0327 -
1.0557 2940 0.0279 -
1.0562 2950 0.0268 -
1.0567 2960 0.0255 -
1.0572 2970 0.0241 -
1.0577 2980 0.0341 -
1.0582 2990 0.0271 -
1.0587 3000 0.0257 0.0558
1.0592 3010 0.0254 -
1.0597 3020 0.0268 -
1.0602 3030 0.0248 -
1.0607 3040 0.0318 -
1.0612 3050 0.033 -
1.0617 3060 0.0359 -
1.0622 3070 0.0312 -
1.0627 3080 0.0334 -
1.0632 3090 0.0329 -
1.0637 3100 0.0347 -
1.0642 3110 0.0399 -
1.0647 3120 0.0341 -
1.0652 3130 0.0394 -
1.0657 3140 0.0412 -
1.0662 3150 0.0441 0.0465
1.0667 3160 0.0393 -
1.0672 3170 0.0442 -
1.0677 3180 0.0309 -
1.0682 3190 0.0402 -
1.0687 3200 0.0381 -
1.0692 3210 0.0318 -
1.0697 3220 0.0374 -
1.0702 3230 0.0358 -
1.0707 3240 0.0367 -
1.0712 3250 0.038 -
1.0717 3260 0.0349 -
1.0722 3270 0.0292 -
1.0727 3280 0.042 -
1.0732 3290 0.0307 -
1.0737 3300 0.0385 0.0444
1.0742 3310 0.0337 -
1.0747 3320 0.0346 -
1.0752 3330 0.0412 -
1.0757 3340 0.0315 -
1.0762 3350 0.0316 -
1.0767 3360 0.0348 -
1.0772 3370 0.0362 -
1.0777 3380 0.0314 -
1.0782 3390 0.0394 -
1.0787 3400 0.0352 -
1.0792 3410 0.0296 -
1.0797 3420 0.0304 -
1.0802 3430 0.03 -
1.0807 3440 0.038 -
1.0812 3450 0.0297 0.0424
1.0817 3460 0.0393 -
1.0822 3470 0.0386 -
1.0827 3480 0.0309 -
1.0832 3490 0.0235 -
1.0837 3500 0.0297 -
1.0842 3510 0.0363 -
1.0847 3520 0.0208 -
1.0852 3530 0.0312 -
1.0857 3540 0.0271 -
1.0862 3550 0.0348 -
1.0867 3560 0.0343 -
1.0872 3570 0.0296 -
1.0877 3580 0.0348 -
1.0882 3590 0.0265 -
1.0887 3600 0.0316 0.0424
1.0892 3610 0.0291 -
1.0897 3620 0.0336 -
1.0902 3630 0.0267 -
1.0907 3640 0.0266 -
1.0912 3650 0.0291 -
2.0004 3660 0.0475 -
2.0009 3670 0.053 -
2.0014 3680 0.0548 -
2.0019 3690 0.0356 -
2.0024 3700 0.0429 -
2.0029 3710 0.062 -
2.0034 3720 0.037 -
2.0039 3730 0.0391 -
2.0044 3740 0.0395 -
2.0049 3750 0.047 0.0452
2.0054 3760 0.0414 -
2.0059 3770 0.043 -
2.0064 3780 0.0561 -
2.0069 3790 0.0493 -
2.0074 3800 0.0443 -
2.0079 3810 0.0442 -
2.0084 3820 0.0469 -
2.0089 3830 0.0414 -
2.0094 3840 0.0446 -
2.0099 3850 0.0443 -
2.0104 3860 0.0503 -
2.0109 3870 0.0394 -
2.0114 3880 0.0392 -
2.0119 3890 0.0402 -
2.0124 3900 0.0458 0.0518
2.0129 3910 0.0516 -
2.0134 3920 0.0364 -
2.0139 3930 0.037 -
2.0144 3940 0.0429 -
2.0149 3950 0.043 -
2.0154 3960 0.0413 -
2.0159 3970 0.041 -
2.0164 3980 0.0447 -
2.0169 3990 0.0416 -
2.0174 4000 0.0416 -
2.0179 4010 0.0373 -
2.0184 4020 0.042 -
2.0189 4030 0.0409 -
2.0194 4040 0.0454 -
2.0199 4050 0.0347 0.0562
2.0204 4060 0.0385 -
2.0209 4070 0.0388 -
2.0214 4080 0.0395 -
2.0219 4090 0.0332 -
2.0224 4100 0.0438 -
2.0229 4110 0.0468 -
2.0234 4120 0.0359 -
2.0239 4130 0.0488 -
2.0244 4140 0.0394 -
2.0249 4150 0.0349 -
2.0254 4160 0.0427 -
2.0259 4170 0.0417 -
2.0264 4180 0.0423 -
2.0269 4190 0.0375 -
2.0274 4200 0.0409 0.0547
2.0279 4210 0.036 -
2.0284 4220 0.0417 -
2.0289 4230 0.0394 -
2.0294 4240 0.0335 -
2.0299 4250 0.0451 -
2.0304 4260 0.0387 -
2.0309 4270 0.0336 -
2.0314 4280 0.0448 -
2.0319 4290 0.0396 -
2.0324 4300 0.0337 -
2.0329 4310 0.0438 -
2.0334 4320 0.0366 -
2.0339 4330 0.0396 -
2.0344 4340 0.038 -
2.0349 4350 0.0403 0.0529
2.0354 4360 0.0427 -
2.0359 4370 0.0461 -
2.0364 4380 0.0439 -
2.0369 4390 0.0328 -
2.0374 4400 0.0422 -
2.0379 4410 0.0387 -
2.0384 4420 0.0385 -
2.0389 4430 0.0414 -
2.0394 4440 0.034 -
2.0399 4450 0.0351 -
2.0404 4460 0.0364 -
2.0409 4470 0.038 -
2.0414 4480 0.0357 -
2.0419 4490 0.035 -
2.0424 4500 0.0518 0.0455
2.0429 4510 0.0399 -
2.0434 4520 0.0315 -
2.0439 4530 0.0311 -
2.0444 4540 0.0252 -
2.0449 4550 0.0291 -
2.0454 4560 0.0264 -
2.0459 4570 0.0212 -
2.0464 4580 0.0262 -
2.0469 4590 0.0248 -
2.0474 4600 0.0246 -
2.0479 4610 0.0222 -
2.0484 4620 0.0277 -
2.0489 4630 0.0177 -
2.0494 4640 0.0221 -
2.0499 4650 0.03 0.0527
2.0504 4660 0.0191 -
2.0509 4670 0.0168 -
2.0514 4680 0.0211 -
2.0519 4690 0.0237 -
2.0524 4700 0.0272 -
2.0529 4710 0.0213 -
2.0534 4720 0.0247 -
2.0539 4730 0.023 -
2.0544 4740 0.023 -
2.0549 4750 0.0233 -
2.0554 4760 0.0231 -
2.0559 4770 0.0203 -
2.0564 4780 0.0231 -
2.0569 4790 0.0194 -
2.0574 4800 0.0222 0.0464
2.0579 4810 0.0227 -
2.0584 4820 0.0256 -
2.0589 4830 0.0169 -
2.0594 4840 0.0209 -
2.0599 4850 0.0203 -
2.0604 4860 0.0264 -
2.0609 4870 0.0239 -
2.0614 4880 0.0282 -
2.0619 4890 0.0278 -
2.0624 4900 0.0175 -
2.0629 4910 0.0234 -
2.0634 4920 0.0253 -
2.0639 4930 0.0335 -
2.0644 4940 0.0261 -
2.0649 4950 0.0274 0.0434
2.0654 4960 0.0306 -
2.0659 4970 0.0253 -
2.0664 4980 0.0303 -
2.0669 4990 0.0335 -
2.0674 5000 0.0333 -
2.0679 5010 0.0321 -
2.0684 5020 0.0336 -
2.0689 5030 0.0266 -
2.0694 5040 0.0295 -
2.0699 5050 0.0319 -
2.0704 5060 0.0371 -
2.0709 5070 0.0284 -
2.0714 5080 0.0266 -
2.0719 5090 0.0259 -
2.0724 5100 0.0292 0.0432
2.0729 5110 0.0243 -
2.0734 5120 0.0283 -
2.0739 5130 0.0326 -
2.0744 5140 0.0268 -
2.0749 5150 0.0282 -
2.0754 5160 0.0225 -
2.0759 5170 0.0271 -
2.0764 5180 0.0286 -
2.0769 5190 0.0319 -
2.0774 5200 0.0317 -
2.0779 5210 0.0265 -
2.0784 5220 0.027 -
2.0789 5230 0.0287 -
2.0794 5240 0.0387 -
2.0799 5250 0.0274 0.0420
2.0804 5260 0.025 -
2.0809 5270 0.0289 -
2.0814 5280 0.0293 -
2.0819 5290 0.0224 -
2.0824 5300 0.03 -
2.0829 5310 0.0267 -
2.0834 5320 0.0299 -
2.0839 5330 0.0264 -
2.0844 5340 0.0242 -
2.0849 5350 0.0212 -
2.0854 5360 0.0262 -
2.0859 5370 0.0208 -
2.0864 5380 0.0262 -
2.0869 5390 0.025 -
2.0874 5400 0.0264 0.0431
2.0879 5410 0.0279 -
2.0884 5420 0.0245 -
2.0889 5430 0.0213 -
2.0894 5440 0.028 -
2.0899 5450 0.0231 -
2.0904 5460 0.0264 -
2.0909 5470 0.0241 -
3.0001 5480 0.0359 -
3.0006 5490 0.042 -
3.0011 5500 0.0344 -
3.0016 5510 0.0423 -
3.0021 5520 0.0318 -
3.0026 5530 0.0329 -
3.0031 5540 0.0395 -
3.0036 5550 0.0384 0.0466
3.0041 5560 0.0414 -
3.0046 5570 0.04 -
3.0051 5580 0.0418 -
3.0056 5590 0.0274 -
3.0061 5600 0.038 -
3.0066 5610 0.0415 -
3.0071 5620 0.0257 -
3.0076 5630 0.0469 -
3.0081 5640 0.0338 -
3.0086 5650 0.034 -
3.0091 5660 0.0397 -
3.0096 5670 0.0388 -
3.0101 5680 0.039 -
3.0106 5690 0.0364 -
3.0111 5700 0.0316 0.0493
3.0116 5710 0.0473 -
3.0121 5720 0.0417 -
3.0126 5730 0.0352 -
3.0131 5740 0.0386 -
3.0136 5750 0.0348 -
3.0141 5760 0.0351 -
3.0146 5770 0.0341 -
3.0151 5780 0.0329 -
3.0156 5790 0.0296 -
3.0161 5800 0.0399 -
3.0166 5810 0.032 -
3.0171 5820 0.0296 -
3.0176 5830 0.0334 -
3.0181 5840 0.0323 -
3.0186 5850 0.0322 0.0447
3.0191 5860 0.0329 -
3.0196 5870 0.034 -
3.0201 5880 0.0407 -
3.0206 5890 0.0384 -
3.0211 5900 0.033 -
3.0216 5910 0.0392 -
3.0221 5920 0.0418 -
3.0226 5930 0.0257 -
3.0231 5940 0.0342 -
3.0236 5950 0.0356 -
3.0241 5960 0.0308 -
3.0246 5970 0.0344 -
3.0251 5980 0.0388 -
3.0256 5990 0.0475 -
3.0261 6000 0.036 0.0432
3.0266 6010 0.0315 -
3.0271 6020 0.0282 -
3.0276 6030 0.0362 -
3.0281 6040 0.0348 -
3.0286 6050 0.0352 -
3.0291 6060 0.0359 -
3.0296 6070 0.0285 -
3.0301 6080 0.0374 -
3.0306 6090 0.0231 -
3.0311 6100 0.0378 -
3.0316 6110 0.0381 -
3.0321 6120 0.0327 -
3.0326 6130 0.0349 -
3.0331 6140 0.0341 -
3.0336 6150 0.0265 0.0477
3.0341 6160 0.0288 -
3.0346 6170 0.0313 -
3.0351 6180 0.0327 -
3.0356 6190 0.0346 -
3.0361 6200 0.033 -
3.0366 6210 0.0348 -
3.0371 6220 0.0348 -
3.0376 6230 0.0314 -
3.0381 6240 0.0296 -
3.0386 6250 0.0301 -
3.0391 6260 0.0344 -
3.0396 6270 0.0263 -
3.0401 6280 0.0357 -
3.0406 6290 0.0247 -
3.0411 6300 0.0277 0.0495
3.0416 6310 0.0242 -
3.0421 6320 0.0262 -
3.0426 6330 0.0257 -
3.0431 6340 0.0262 -
3.0436 6350 0.0272 -
3.0441 6360 0.0257 -
3.0446 6370 0.0258 -
3.0451 6380 0.0225 -
3.0456 6390 0.0202 -
3.0461 6400 0.0214 -
3.0466 6410 0.0248 -
3.0471 6420 0.0195 -
3.0476 6430 0.0218 -
3.0481 6440 0.024 -
3.0486 6450 0.0297 0.0439
3.0491 6460 0.0219 -
3.0496 6470 0.0256 -
3.0501 6480 0.0189 -
3.0506 6490 0.019 -
3.0511 6500 0.0235 -
3.0516 6510 0.0196 -
3.0521 6520 0.0192 -
3.0526 6530 0.0195 -
3.0531 6540 0.0189 -
3.0536 6550 0.0211 -
3.0541 6560 0.0224 -
3.0546 6570 0.0184 -
3.0551 6580 0.0196 -
3.0556 6590 0.0169 -
3.0561 6600 0.0257 0.0436
3.0566 6610 0.0164 -
3.0571 6620 0.018 -
3.0576 6630 0.0167 -
3.0581 6640 0.0194 -
3.0586 6650 0.0202 -
3.0591 6660 0.0163 -
3.0596 6670 0.0186 -
3.0601 6680 0.0193 -
3.0606 6690 0.0186 -
3.0611 6700 0.02 -
3.0616 6710 0.02 -
3.0621 6720 0.0198 -
3.0626 6730 0.0252 -
3.0631 6740 0.0183 -
3.0636 6750 0.0173 0.0454
3.0641 6760 0.0181 -
3.0646 6770 0.0246 -
3.0651 6780 0.0204 -
3.0656 6790 0.0241 -
3.0661 6800 0.0357 -
3.0666 6810 0.0268 -
3.0671 6820 0.0201 -
3.0676 6830 0.0232 -
3.0681 6840 0.0278 -
3.0686 6850 0.0232 -
3.0691 6860 0.0326 -
3.0696 6870 0.0267 -
3.0701 6880 0.029 -
3.0706 6890 0.0209 -
3.0711 6900 0.0236 0.0427
3.0716 6910 0.0228 -
3.0721 6920 0.0195 -
3.0726 6930 0.022 -
3.0731 6940 0.0304 -
3.0736 6950 0.0296 -
3.0741 6960 0.0238 -
3.0746 6970 0.0275 -
3.0751 6980 0.0234 -
3.0756 6990 0.0222 -
3.0761 7000 0.0222 -
3.0766 7010 0.0306 -
3.0771 7020 0.0271 -
3.0776 7030 0.0244 -
3.0781 7040 0.0268 -
3.0786 7050 0.0336 0.0419
3.0791 7060 0.0245 -
3.0796 7070 0.0202 -
3.0801 7080 0.022 -
3.0806 7090 0.0253 -
3.0811 7100 0.021 -
3.0816 7110 0.0233 -
3.0821 7120 0.0238 -
3.0826 7130 0.0241 -
3.0831 7140 0.0244 -
3.0836 7150 0.025 -
3.0841 7160 0.0279 -
3.0846 7170 0.0234 -
3.0851 7180 0.0235 -
3.0856 7190 0.0186 -
3.0861 7200 0.0191 0.0423
3.0866 7210 0.0269 -
3.0871 7220 0.0288 -
3.0876 7230 0.024 -
3.0881 7240 0.0217 -
3.0886 7250 0.0244 -
3.0891 7260 0.0226 -
3.0896 7270 0.0172 -
3.0901 7280 0.0211 -
3.0906 7290 0.0214 -
3.0911 7300 0.0208 -
4.0003 7310 0.033 -
4.0008 7320 0.0363 -
4.0013 7330 0.0401 -
4.0018 7340 0.0294 -
4.0023 7350 0.0387 0.0425
4.0028 7360 0.0258 -
4.0033 7370 0.0296 -
4.0038 7380 0.0432 -
4.0043 7390 0.0331 -
4.0048 7400 0.033 -
4.0053 7410 0.0274 -
4.0058 7420 0.0294 -
4.0063 7430 0.0377 -
4.0068 7440 0.0366 -
4.0073 7450 0.0239 -
4.0078 7460 0.0363 -
4.0083 7470 0.0267 -
4.0088 7480 0.0288 -
4.0093 7490 0.0354 -
4.0098 7500 0.0424 0.0452
4.0103 7510 0.0319 -
4.0108 7520 0.0375 -
4.0113 7530 0.0371 -
4.0118 7540 0.0363 -
4.0123 7550 0.0296 -
4.0128 7560 0.0363 -
4.0133 7570 0.034 -
4.0138 7580 0.0288 -
4.0143 7590 0.0341 -
4.0148 7600 0.0261 -
4.0153 7610 0.0321 -
4.0158 7620 0.0261 -
4.0163 7630 0.0364 -
4.0168 7640 0.0288 -
4.0173 7650 0.0309 0.0479
4.0178 7660 0.0306 -
4.0183 7670 0.0286 -
4.0188 7680 0.0255 -
4.0193 7690 0.0409 -
4.0198 7700 0.0363 -
4.0203 7710 0.0317 -
4.0208 7720 0.0335 -
4.0213 7730 0.0245 -
4.0218 7740 0.0316 -
4.0223 7750 0.0344 -
4.0228 7760 0.02 -
4.0233 7770 0.0318 -
4.0238 7780 0.0318 -
4.0243 7790 0.0306 -
4.0248 7800 0.0269 0.0437
4.0253 7810 0.0227 -
4.0258 7820 0.033 -
4.0263 7830 0.0278 -
4.0268 7840 0.0305 -
4.0273 7850 0.028 -
4.0278 7860 0.0278 -
4.0283 7870 0.0259 -
4.0288 7880 0.0272 -
4.0293 7890 0.0293 -
4.0298 7900 0.0344 -
4.0303 7910 0.033 -
4.0308 7920 0.0356 -
4.0313 7930 0.0266 -
4.0318 7940 0.0313 -
4.0323 7950 0.0279 0.0499
4.0328 7960 0.0278 -
4.0333 7970 0.0309 -
4.0338 7980 0.026 -
4.0343 7990 0.0315 -
4.0348 8000 0.0297 -
4.0353 8010 0.0282 -
4.0358 8020 0.0261 -
4.0363 8030 0.0284 -
4.0368 8040 0.0328 -
4.0373 8050 0.0282 -
4.0378 8060 0.0244 -
4.0383 8070 0.0301 -
4.0388 8080 0.0299 -
4.0393 8090 0.028 -
4.0398 8100 0.0323 0.0494
4.0403 8110 0.0266 -
4.0408 8120 0.0252 -
4.0413 8130 0.0229 -
4.0418 8140 0.0216 -
4.0423 8150 0.0226 -
4.0428 8160 0.0255 -
4.0433 8170 0.0273 -
4.0438 8180 0.0225 -
4.0443 8190 0.0195 -
4.0448 8200 0.019 -
4.0453 8210 0.0208 -
4.0458 8220 0.0211 -
4.0463 8230 0.022 -
4.0468 8240 0.0237 -
4.0473 8250 0.0217 0.0442
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.2.2
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
11
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for LucaZilli/arctic-m-long-q-oai-v1

Finetuned
(8)
this model