SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l-v2.0
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/arctic-l-enhanced")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 4.000000000000001e-06max_steps
: 9291warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4.000000000000001e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: 9291lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 10 | 0.1329 | - |
0.0022 | 20 | 0.1211 | - |
0.0032 | 30 | 0.1533 | - |
0.0043 | 40 | 0.1325 | - |
0.0054 | 50 | 0.1076 | - |
0.0065 | 60 | 0.1349 | - |
0.0075 | 70 | 0.1224 | - |
0.0086 | 80 | 0.1062 | - |
0.0097 | 90 | 0.1026 | - |
0.0108 | 100 | 0.0873 | - |
0.0118 | 110 | 0.0733 | - |
0.0129 | 120 | 0.0799 | - |
0.0140 | 130 | 0.0773 | - |
0.0151 | 140 | 0.0666 | - |
0.0161 | 150 | 0.069 | 0.0615 |
0.0172 | 160 | 0.0639 | - |
0.0183 | 170 | 0.063 | - |
0.0194 | 180 | 0.0739 | - |
0.0204 | 190 | 0.0708 | - |
0.0215 | 200 | 0.0532 | - |
0.0226 | 210 | 0.0573 | - |
0.0237 | 220 | 0.0503 | - |
0.0248 | 230 | 0.0564 | - |
0.0258 | 240 | 0.0592 | - |
0.0269 | 250 | 0.0555 | - |
0.0280 | 260 | 0.0513 | - |
0.0291 | 270 | 0.055 | - |
0.0301 | 280 | 0.0522 | - |
0.0312 | 290 | 0.054 | - |
0.0323 | 300 | 0.0548 | 0.0531 |
0.0334 | 310 | 0.0495 | - |
0.0344 | 320 | 0.047 | - |
0.0355 | 330 | 0.0551 | - |
0.0366 | 340 | 0.0534 | - |
0.0377 | 350 | 0.0492 | - |
0.0387 | 360 | 0.0584 | - |
0.0398 | 370 | 0.0452 | - |
0.0409 | 380 | 0.0572 | - |
0.0420 | 390 | 0.0423 | - |
0.0431 | 400 | 0.0533 | - |
0.0441 | 410 | 0.0445 | - |
0.0452 | 420 | 0.0513 | - |
0.0463 | 430 | 0.0446 | - |
0.0474 | 440 | 0.0412 | - |
0.0484 | 450 | 0.0456 | 0.0544 |
0.0495 | 460 | 0.0401 | - |
0.0506 | 470 | 0.0392 | - |
0.0517 | 480 | 0.042 | - |
0.0527 | 490 | 0.0513 | - |
0.0538 | 500 | 0.0368 | - |
0.0549 | 510 | 0.043 | - |
0.0560 | 520 | 0.0418 | - |
0.0570 | 530 | 0.0419 | - |
0.0581 | 540 | 0.0377 | - |
0.0592 | 550 | 0.0354 | - |
0.0603 | 560 | 0.0358 | - |
0.0613 | 570 | 0.0474 | - |
0.0624 | 580 | 0.0384 | - |
0.0635 | 590 | 0.0411 | - |
0.0646 | 600 | 0.0417 | 0.0558 |
0.0657 | 610 | 0.0389 | - |
0.0667 | 620 | 0.0418 | - |
0.0678 | 630 | 0.0391 | - |
0.0689 | 640 | 0.0354 | - |
0.0700 | 650 | 0.0428 | - |
0.0710 | 660 | 0.0453 | - |
0.0721 | 670 | 0.0333 | - |
0.0732 | 680 | 0.0466 | - |
0.0743 | 690 | 0.0406 | - |
0.0753 | 700 | 0.0378 | - |
0.0764 | 710 | 0.0399 | - |
0.0775 | 720 | 0.036 | - |
0.0786 | 730 | 0.0403 | - |
0.0796 | 740 | 0.0408 | - |
0.0807 | 750 | 0.0335 | 0.0531 |
0.0818 | 760 | 0.0335 | - |
0.0829 | 770 | 0.0387 | - |
0.0840 | 780 | 0.035 | - |
0.0850 | 790 | 0.0351 | - |
0.0861 | 800 | 0.0407 | - |
0.0872 | 810 | 0.0371 | - |
0.0883 | 820 | 0.0387 | - |
0.0893 | 830 | 0.0365 | - |
0.0904 | 840 | 0.0395 | - |
0.0915 | 850 | 0.0403 | - |
0.0926 | 860 | 0.04 | - |
0.0936 | 870 | 0.0356 | - |
0.0947 | 880 | 0.0333 | - |
0.0958 | 890 | 0.0269 | - |
0.0969 | 900 | 0.0341 | 0.0455 |
0.0979 | 910 | 0.0294 | - |
0.0990 | 920 | 0.0269 | - |
0.1001 | 930 | 0.0293 | - |
0.1012 | 940 | 0.034 | - |
0.1022 | 950 | 0.0288 | - |
0.1033 | 960 | 0.017 | - |
0.1044 | 970 | 0.0345 | - |
0.1055 | 980 | 0.0331 | - |
0.1066 | 990 | 0.0279 | - |
0.1076 | 1000 | 0.0255 | - |
0.1087 | 1010 | 0.0279 | - |
0.1098 | 1020 | 0.0232 | - |
0.1109 | 1030 | 0.0299 | - |
0.1119 | 1040 | 0.0268 | - |
0.1130 | 1050 | 0.0196 | 0.0468 |
0.1141 | 1060 | 0.0235 | - |
0.1152 | 1070 | 0.0305 | - |
0.1162 | 1080 | 0.0429 | - |
0.1173 | 1090 | 0.043 | - |
0.1184 | 1100 | 0.0408 | - |
0.1195 | 1110 | 0.0387 | - |
0.1205 | 1120 | 0.0389 | - |
0.1216 | 1130 | 0.0452 | - |
0.1227 | 1140 | 0.0424 | - |
0.1238 | 1150 | 0.0388 | - |
0.1249 | 1160 | 0.0474 | - |
0.1259 | 1170 | 0.0303 | - |
0.1270 | 1180 | 0.0379 | - |
0.1281 | 1190 | 0.033 | - |
0.1292 | 1200 | 0.0303 | 0.0361 |
0.1302 | 1210 | 0.0361 | - |
0.1313 | 1220 | 0.0366 | - |
0.1324 | 1230 | 0.0359 | - |
0.1335 | 1240 | 0.0304 | - |
0.1345 | 1250 | 0.0265 | - |
0.1356 | 1260 | 0.0286 | - |
0.1367 | 1270 | 0.0326 | - |
0.1378 | 1280 | 0.0324 | - |
0.1388 | 1290 | 0.0304 | - |
0.1399 | 1300 | 0.0328 | - |
0.1410 | 1310 | 0.0339 | - |
0.1421 | 1320 | 0.0362 | - |
0.1431 | 1330 | 0.0318 | - |
0.1442 | 1340 | 0.0291 | - |
0.1453 | 1350 | 0.0241 | 0.0345 |
0.1464 | 1360 | 0.0233 | - |
0.1475 | 1370 | 0.029 | - |
0.1485 | 1380 | 0.0224 | - |
0.1496 | 1390 | 0.0364 | - |
0.1507 | 1400 | 0.033 | - |
0.1518 | 1410 | 0.0337 | - |
0.1528 | 1420 | 0.0328 | - |
0.1539 | 1430 | 0.0253 | - |
0.1550 | 1440 | 0.028 | - |
0.1561 | 1450 | 0.023 | - |
0.1571 | 1460 | 0.034 | - |
0.1582 | 1470 | 0.0296 | - |
0.1593 | 1480 | 0.0278 | - |
0.1604 | 1490 | 0.0357 | - |
0.1614 | 1500 | 0.0267 | 0.0357 |
0.1625 | 1510 | 0.0372 | - |
0.1636 | 1520 | 0.0264 | - |
0.1647 | 1530 | 0.0239 | - |
0.1658 | 1540 | 0.0307 | - |
0.1668 | 1550 | 0.0288 | - |
0.1679 | 1560 | 0.0275 | - |
0.1690 | 1570 | 0.0228 | - |
0.1701 | 1580 | 0.0219 | - |
0.1711 | 1590 | 0.0243 | - |
0.1722 | 1600 | 0.0191 | - |
0.1733 | 1610 | 0.018 | - |
0.1744 | 1620 | 0.0226 | - |
0.1754 | 1630 | 0.0261 | - |
0.1765 | 1640 | 0.0248 | - |
0.1776 | 1650 | 0.0199 | 0.0359 |
0.1787 | 1660 | 0.0309 | - |
0.1797 | 1670 | 0.0213 | - |
0.1808 | 1680 | 0.0221 | - |
0.1819 | 1690 | 0.0257 | - |
0.1830 | 1700 | 0.0219 | - |
0.1840 | 1710 | 0.0294 | - |
0.1851 | 1720 | 0.021 | - |
0.1862 | 1730 | 0.0215 | - |
0.1873 | 1740 | 0.0187 | - |
0.1884 | 1750 | 0.021 | - |
0.1894 | 1760 | 0.02 | - |
0.1905 | 1770 | 0.0208 | - |
0.1916 | 1780 | 0.0184 | - |
0.1927 | 1790 | 0.0182 | - |
0.1937 | 1800 | 0.0158 | 0.0398 |
0.1948 | 1810 | 0.0191 | - |
0.1959 | 1820 | 0.0256 | - |
0.1970 | 1830 | 0.0199 | - |
0.1980 | 1840 | 0.0163 | - |
0.1991 | 1850 | 0.0241 | - |
0.2002 | 1860 | 0.0153 | - |
0.2013 | 1870 | 0.0198 | - |
0.2023 | 1880 | 0.0177 | - |
0.2034 | 1890 | 0.0172 | - |
0.2045 | 1900 | 0.0154 | - |
0.2056 | 1910 | 0.0213 | - |
0.2067 | 1920 | 0.0159 | - |
0.2077 | 1930 | 0.0227 | - |
0.2088 | 1940 | 0.0149 | - |
0.2099 | 1950 | 0.0198 | 0.0423 |
0.2110 | 1960 | 0.0178 | - |
0.2120 | 1970 | 0.0153 | - |
0.2131 | 1980 | 0.0163 | - |
0.2142 | 1990 | 0.0161 | - |
0.2153 | 2000 | 0.014 | - |
0.2163 | 2010 | 0.0143 | - |
0.2174 | 2020 | 0.0188 | - |
0.2185 | 2030 | 0.0159 | - |
0.2196 | 2040 | 0.0189 | - |
0.2206 | 2050 | 0.02 | - |
0.2217 | 2060 | 0.0152 | - |
0.2228 | 2070 | 0.0227 | - |
0.2239 | 2080 | 0.0194 | - |
0.2249 | 2090 | 0.0156 | - |
0.2260 | 2100 | 0.0159 | 0.0449 |
0.2271 | 2110 | 0.0156 | - |
0.2282 | 2120 | 0.0152 | - |
0.2293 | 2130 | 0.016 | - |
0.2303 | 2140 | 0.0124 | - |
0.2314 | 2150 | 0.0157 | - |
0.2325 | 2160 | 0.0217 | - |
0.2336 | 2170 | 0.0146 | - |
0.2346 | 2180 | 0.015 | - |
0.2357 | 2190 | 0.0139 | - |
0.2368 | 2200 | 0.0139 | - |
0.2379 | 2210 | 0.0181 | - |
0.2389 | 2220 | 0.0196 | - |
0.2400 | 2230 | 0.0163 | - |
0.2411 | 2240 | 0.014 | - |
0.2422 | 2250 | 0.015 | 0.0469 |
0.2432 | 2260 | 0.0156 | - |
0.2443 | 2270 | 0.0172 | - |
0.2454 | 2280 | 0.016 | - |
0.2465 | 2290 | 0.015 | - |
0.2476 | 2300 | 0.0171 | - |
0.2486 | 2310 | 0.0151 | - |
0.2497 | 2320 | 0.0147 | - |
0.2508 | 2330 | 0.0197 | - |
0.2519 | 2340 | 0.0153 | - |
0.2529 | 2350 | 0.0145 | - |
0.2540 | 2360 | 0.0143 | - |
0.2551 | 2370 | 0.0122 | - |
0.2562 | 2380 | 0.0151 | - |
0.2572 | 2390 | 0.0143 | - |
0.2583 | 2400 | 0.0136 | 0.0502 |
0.2594 | 2410 | 0.0137 | - |
0.2605 | 2420 | 0.0143 | - |
0.2615 | 2430 | 0.0153 | - |
0.2626 | 2440 | 0.019 | - |
0.2637 | 2450 | 0.0125 | - |
0.2648 | 2460 | 0.0146 | - |
0.2658 | 2470 | 0.0154 | - |
0.2669 | 2480 | 0.0158 | - |
0.2680 | 2490 | 0.0129 | - |
0.2691 | 2500 | 0.0131 | - |
0.2702 | 2510 | 0.0217 | - |
0.2712 | 2520 | 0.0132 | - |
0.2723 | 2530 | 0.0133 | - |
0.2734 | 2540 | 0.0146 | - |
0.2745 | 2550 | 0.0152 | 0.0555 |
0.2755 | 2560 | 0.014 | - |
0.2766 | 2570 | 0.0174 | - |
0.2777 | 2580 | 0.0161 | - |
0.2788 | 2590 | 0.0145 | - |
0.2798 | 2600 | 0.0193 | - |
0.2809 | 2610 | 0.0145 | - |
0.2820 | 2620 | 0.0146 | - |
0.2831 | 2630 | 0.0129 | - |
0.2841 | 2640 | 0.0158 | - |
0.2852 | 2650 | 0.0165 | - |
0.2863 | 2660 | 0.0135 | - |
0.2874 | 2670 | 0.0163 | - |
0.2885 | 2680 | 0.0159 | - |
0.2895 | 2690 | 0.0146 | - |
0.2906 | 2700 | 0.0186 | 0.0531 |
0.2917 | 2710 | 0.0161 | - |
0.2928 | 2720 | 0.0149 | - |
0.2938 | 2730 | 0.0147 | - |
0.2949 | 2740 | 0.0128 | - |
0.2960 | 2750 | 0.0198 | - |
0.2971 | 2760 | 0.0123 | - |
0.2981 | 2770 | 0.0133 | - |
0.2992 | 2780 | 0.0146 | - |
0.3003 | 2790 | 0.0133 | - |
0.3014 | 2800 | 0.0158 | - |
0.3024 | 2810 | 0.0125 | - |
0.3035 | 2820 | 0.0122 | - |
0.3046 | 2830 | 0.0129 | - |
0.3057 | 2840 | 0.0132 | - |
0.3067 | 2850 | 0.0138 | 0.0472 |
0.3078 | 2860 | 0.0134 | - |
0.3089 | 2870 | 0.0142 | - |
0.3100 | 2880 | 0.0141 | - |
0.3111 | 2890 | 0.019 | - |
0.3121 | 2900 | 0.0127 | - |
0.3132 | 2910 | 0.0117 | - |
0.3143 | 2920 | 0.0166 | - |
0.3154 | 2930 | 0.0365 | - |
0.3164 | 2940 | 0.0328 | - |
0.3175 | 2950 | 0.0344 | - |
0.3186 | 2960 | 0.0345 | - |
0.3197 | 2970 | 0.0312 | - |
0.3207 | 2980 | 0.017 | - |
0.3218 | 2990 | 0.0176 | - |
0.3229 | 3000 | 0.0145 | 0.0400 |
0.3240 | 3010 | 0.0116 | - |
0.3250 | 3020 | 0.018 | - |
0.3261 | 3030 | 0.017 | - |
0.3272 | 3040 | 0.0114 | - |
0.3283 | 3050 | 0.0124 | - |
0.3294 | 3060 | 0.012 | - |
0.3304 | 3070 | 0.0118 | - |
0.3315 | 3080 | 0.01 | - |
0.3326 | 3090 | 0.0147 | - |
1.0002 | 3100 | 0.0212 | - |
1.0013 | 3110 | 0.0488 | - |
1.0024 | 3120 | 0.0495 | - |
1.0034 | 3130 | 0.0384 | - |
1.0045 | 3140 | 0.0422 | - |
1.0056 | 3150 | 0.0326 | 0.0453 |
1.0067 | 3160 | 0.0375 | - |
1.0077 | 3170 | 0.0397 | - |
1.0088 | 3180 | 0.0469 | - |
1.0099 | 3190 | 0.0462 | - |
1.0110 | 3200 | 0.034 | - |
1.0121 | 3210 | 0.048 | - |
1.0131 | 3220 | 0.0377 | - |
1.0142 | 3230 | 0.0299 | - |
1.0153 | 3240 | 0.0344 | - |
1.0164 | 3250 | 0.04 | - |
1.0174 | 3260 | 0.0399 | - |
1.0185 | 3270 | 0.037 | - |
1.0196 | 3280 | 0.0365 | - |
1.0207 | 3290 | 0.039 | - |
1.0217 | 3300 | 0.0355 | 0.0462 |
1.0228 | 3310 | 0.0328 | - |
1.0239 | 3320 | 0.0297 | - |
1.0250 | 3330 | 0.031 | - |
1.0260 | 3340 | 0.0387 | - |
1.0271 | 3350 | 0.0297 | - |
1.0282 | 3360 | 0.0355 | - |
1.0293 | 3370 | 0.0399 | - |
1.0304 | 3380 | 0.0321 | - |
1.0314 | 3390 | 0.0265 | - |
1.0325 | 3400 | 0.0345 | - |
1.0336 | 3410 | 0.0276 | - |
1.0347 | 3420 | 0.036 | - |
1.0357 | 3430 | 0.0295 | - |
1.0368 | 3440 | 0.036 | - |
1.0379 | 3450 | 0.032 | 0.0434 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.2.2
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for LucaZilli/arctic-l-enhanced
Base model
Snowflake/snowflake-arctic-embed-l-v2.0