File size: 22,686 Bytes
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a60346
 
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea9075
 
5eb3aa1
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd74f1
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d54fdb
 
 
 
 
 
 
 
 
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d54fdb
 
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d54fdb
 
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d54fdb
 
 
67e2b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# -*- coding: utf-8 -*-
"""HyenaDNA custom code port to Hugging Face Hub"""

import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from .configuration_hyena import HyenaConfig
from transformers import PreTrainedModel
from typing import Optional, Tuple, Union
from transformers.modeling_outputs import CausalLMOutput, SequenceClassifierOutput, BaseModelOutputWithNoAttention


def fftconv(u, k, D):
    """
    We apply a convolution through the fourier domain (from the Convolution Theorem)

    """
    seqlen = u.shape[-1]
    fft_size = 2 * seqlen

    k_f = torch.fft.rfft(k.to(torch.float32), n=fft_size) / fft_size
    u_f = torch.fft.rfft(u.to(dtype=torch.float32), n=fft_size)

    if len(u.shape) > 3: k_f = k_f.unsqueeze(1)
    y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen]

    out = y + u * D.unsqueeze(-1)
    return out.to(dtype=u.dtype)


@torch.jit.script
def mul_sum(q, y):
    return (q * y).sum(dim=1)


class HyenaSin(nn.Module):
    """The Sin activation function for the Hyena Filter function."""
    def __init__(self, config):
        super().__init__()
        self.freq = nn.Parameter(config.activation_freq * torch.ones(1, config.filter_order)) if config.train_freq else config.activation_freq * torch.ones(1, config.filter_order)

    def forward(self, x):
        return torch.sin(self.freq * x)


class HyenaPositionalEmbedding(nn.Module):
    def __init__(self, config):
        """Complex exponential positional embeddings for Hyena filters."""
        super().__init__()

        self.seq_len = config.max_seq_len
        # The time embedding fed to the filteres is normalized so that t_f = 1
        t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1

        if config.emb_dim > 1:
            bands = (config.emb_dim - 1) // 2
        # To compute the right embeddings we use the "proper" linspace
        t_rescaled = torch.linspace(0, self.seq_len - 1, self.seq_len)[None, :, None]
        w = 2 * math.pi * t_rescaled / self.seq_len # 1, L, 1

        f = torch.linspace(1e-4, bands - 1, bands)[None, None]

        z = torch.cat([t, torch.cos(-f * w), torch.sin(-f * w)], dim=-1)
        # The original code sets z's LR to lr_pos_emb, which is 1e-5 by default
        self.z = nn.Parameter(z, requires_grad=True)
        self.register_buffer("t", t)

    def forward(self, L):
        return self.z[:, :L], self.t[:, :L]


class HyenaExponentialModulation(nn.Module):
    """The window function applied to the output of the (MLP) filter function."""
    def __init__(
        self,
        d_model,
        fast_decay_pct=0.3,
        slow_decay_pct=1.5,
        target=1e-2,
        modulate: bool=True,
        shift: float = 0.05,
        **kwargs
    ):
        super().__init__()
        self.modulate = modulate
        self.shift = shift
        max_decay = math.log(target) / fast_decay_pct
        min_decay = math.log(target) / slow_decay_pct
        deltas = torch.linspace(min_decay, max_decay, d_model)[None, None]
        self.register_buffer("deltas", deltas)

    def forward(self, t, x):
        if self.modulate:
            decay = torch.exp(-t * self.deltas.abs())
            x = x * (decay + self.shift)
        return x


class HyenaFilter(nn.Module):
    def __init__(
            self,
            config,
            **kwargs
        ):
        """
        Implicit long filter with modulation.

        Args:
            d_model: number of channels in the input
            emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands
            order: width of the FFN
            num_inner_mlps: number of inner linear layers inside filter MLP

        Note:
            filter_dropout is not implemented
        """
        super().__init__()

        self.d_model = config.d_model * (config.hyena_order - 1)
        self.use_bias = config.use_bias
        self.bias = nn.Parameter(torch.randn(self.d_model))
        self.dropout = nn.Dropout(config.hyena_filter_dropout)

        act = HyenaSin(config)
        self.emb_dim = config.emb_dim
        assert self.emb_dim % 2 != 0 and self.emb_dim >= 3, "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)"
        self.seq_len = config.max_seq_len

        self.pos_emb = HyenaPositionalEmbedding(config)

        self.implicit_filter = nn.Sequential(
            nn.Linear(self.emb_dim, config.filter_order),
            act,
        )
        for i in range(config.num_inner_mlps):
            self.implicit_filter.append(nn.Linear(config.filter_order, config.filter_order))
            self.implicit_filter.append(act)

        self.implicit_filter.append(nn.Linear(config.filter_order, config.d_model, bias=False))

        self.modulation = HyenaExponentialModulation(config.d_model)

        self.normalized = False

    def filter(self, L, *args, **kwargs):
        z, t = self.pos_emb(L)
        h = self.implicit_filter(z.to(dtype=self.implicit_filter[0].weight.dtype))
        h = self.modulation(t, h)
        return h

    def forward(self, x, L, k=None, bias=None, *args, **kwargs):
        if k is None: k = self.filter(L)

        # Ensure compatibility with filters that return a tuple
        k = k[0] if type(k) is tuple else k

        y = fftconv(x, k, bias)
        return y


class HyenaOperator(nn.Module):
    def __init__(
            self,
            config,
            **filter_args,
        ):
        r"""
        Hyena operator described in the paper https://arxiv.org/pdf/2302.10866.pdf

        Args:
            d_model (int): Dimension of the input and output embeddings (width of the layer)
            l_max: (int): Maximum input sequence length. Defaults to None
            order: (int): Depth of the Hyena recurrence. Defaults to 2
            dropout: (float): Dropout probability. Defaults to 0.0
            filter_dropout: (float): Dropout probability for the filter. Defaults to 0.0
        """
        super().__init__()

        self.d_model = config.d_model
        self.l_max = config.max_seq_len
        self.order = config.hyena_order
        inner_width = config.d_model * (self.order + 1)
        self.dropout = nn.Dropout(config.hyena_dropout)
        self.in_proj = nn.Linear(self.d_model, inner_width)
        self.out_proj = nn.Linear(self.d_model, self.d_model)

        self.short_filter = nn.Conv1d(
            inner_width,
            inner_width,
            config.short_filter_order,
            padding=2,
            groups=inner_width
        )
        self.filter_fn = HyenaFilter(config)

    def forward(self, u):
        l = u.size(-2)
        l_filter = min(l, self.l_max)
        u = self.in_proj(u).transpose(1, 2)

        uc = self.short_filter(u)[...,:l_filter]
        *x, v = uc.split(self.d_model, dim=1)

        k = self.filter_fn.filter(l_filter)[0]
        k = k.transpose(0, 1).reshape(self.order - 1, self.d_model, l_filter)
        bias = self.filter_fn.bias.reshape(self.order - 1, self.d_model)

        for o, x_i in enumerate(reversed(x[1:])):
            v = self.dropout(v * x_i)
            v = self.filter_fn(v, l_filter, k=k[o], bias=bias[o])

        y = (v * x[0]).transpose(1, 2)

        y = self.out_proj(y)
        return y

class HyenaMlp(nn.Module):

    def __init__(self, config):
        """
        From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/mlp.py
        """
        super().__init__()
        in_features = config.d_model
        hidden_features = config.d_inner
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.fc2 = nn.Linear(hidden_features, config.d_model)

    def forward(self, x):
        y = self.fc1(x)
        y = F.gelu(y, approximate="tanh")
        y = self.fc2(y)
        return y

class HyenaBlock(nn.Module):

    def __init__(self, config):
        """
        From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/block.py
        For prenorm=True, this Block has a slightly different structure compared to a regular
        prenorm Transformer block.
        The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
        [Ref: https://arxiv.org/abs/2002.04745]
        Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
        the hidden_states (output of the MLP) and the residual.
        This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
        The residual needs to be provided (except for the very first block).
        For prenorm=False, this Block has the same structure as a regular postnorm Transformer
        block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.
        return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
        This is for performance reason: for post-norm architecture, returning the input allows us
        to fuse the backward of nn.Linear with the residual connection.
        """
        super().__init__()
        self.mixer = HyenaOperator(config)
        self.norm1 = nn.LayerNorm(config.d_model)
        self.mlp = HyenaMlp(config)
        self.norm2 = nn.LayerNorm(config.d_model)

    def forward(self, hidden_states):
        r"""Pass the input through the encoder layer.
        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
        """
        residual = hidden_states
        residual = residual.to(torch.float32)
        hyena_normed = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
        hidden_states = self.mixer(hyena_normed)
        # Tested above here and all is equivalent. That means the mixer is fine!!!
        residual = hidden_states + residual
        hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
        residual = residual.to(torch.float32)

        hidden_states = self.mlp(hidden_states)
        return hidden_states + residual


# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454


class HyenaEmbeddings(nn.Module):

    def __init__(self, config, padding_idx=None):
        """
            If max_position_embeddings <= 0, there's no position embeddings
            If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension
                the project up to embed_dim
        """
        super().__init__()
        vocab_size = config.vocab_size
        if vocab_size % config.pad_vocab_size_multiple != 0:
            vocab_size += config.pad_vocab_size_multiple - (vocab_size % config.pad_vocab_size_multiple)
        self.word_embeddings = nn.Embedding(vocab_size, config.d_model, padding_idx=padding_idx)

    def forward(self, input_ids):
        """
            input_ids: (batch, seqlen)
        """
        embeddings = self.word_embeddings(input_ids)
        return embeddings

class HyenaLMBackbone(nn.Module):

    def __init__(self, config) -> None:
        super().__init__()
        # note max_position_embeddings is 0 for Hyena, and therefore isn't used
        self.embeddings = HyenaEmbeddings(config)
        self.dropout = nn.Dropout(config.embed_dropout)

        self.layers = nn.ModuleList([HyenaBlock(config) for i in range(config.n_layer)])

        self.ln_f = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.gradient_checkpointing = False

    def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
        all_hidden_states = []
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.embeddings(input_ids)
        if output_hidden_states:
            all_hidden_states.append(hidden_states)

        for layer in self.layers:
            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(layer.__call__, hidden_states)
            else:
                hidden_states = layer(hidden_states)
            if output_hidden_states:
                all_hidden_states.append(hidden_states)

        hidden_states = self.ln_f(hidden_states.to(dtype=self.ln_f.weight.dtype))
        if output_hidden_states:
            all_hidden_states.append(hidden_states)

        return hidden_states, all_hidden_states


class HyenaDNAPreTrainedModel(PreTrainedModel):
    config_class = HyenaConfig
    base_model_prefix = "hyena"
    supports_gradient_checkpointing = True
    _no_split_modules = ["HyenaBlock"]
    _skip_keys_device_placement = "past_key_values"
    _keys_to_ignore_on_load_missing = [r"freq"]  # Shared tensors that safetensors merges

    def _init_weights(self, module, initializer_range=0.02):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, std=initializer_range)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, std=initializer_range)
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in self.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * self.config.num_layers))
            # If using GLU activation for now, we scale the std by 2
            elif name in ["output_linear.0.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * self.config.num_layers))


class HyenaDNAModel(HyenaDNAPreTrainedModel):
    def __init__(self, config, **kwargs) -> None:
        super().__init__(config, **kwargs)

        self.backbone = HyenaLMBackbone(config)
        self.config = config

        # Initialize weights and apply final processing
        self.post_init()

    def forward(self, input_ids, inputs_embeds=None, output_hidden_states=None, return_dict=None):
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states, all_hidden_states = self.backbone(input_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states)
        if return_dict:
            return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states,
                                                  hidden_states=all_hidden_states if output_hidden_states else None)
        elif output_hidden_states:
            return hidden_states, all_hidden_states
        else:
            return hidden_states


class HyenaDNAForCausalLM(HyenaDNAPreTrainedModel):

    def __init__(self, config, **kwargs):
        super().__init__(config, **kwargs)
        self.hyena = HyenaDNAModel(config)
        vocab_size = config.vocab_size
        if vocab_size % config.pad_vocab_size_multiple != 0:
            vocab_size += config.pad_vocab_size_multiple - (vocab_size % config.pad_vocab_size_multiple)
        self.vocab_size = vocab_size
        self.lm_head = nn.Linear(config.d_model, vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.hyena.backbone.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.hyena.backbone.embeddings.word_embeddings = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.hyena = decoder

    def get_decoder(self):
        return self.hyena

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutput]:

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.hyena(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
        )


class HyenaDNAForSequenceClassification(HyenaDNAPreTrainedModel):
    def __init__(self, config, **kwargs):
        super().__init__(config, **kwargs)
        self.num_labels = kwargs.get("num_labels", config.num_labels)
        self.hyena = HyenaDNAModel(config)
        self.score = nn.Linear(config.d_model, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.hyena.backbone.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.hyena.backbone.embeddings.word_embeddings = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.hyena(
            input_ids,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
                    logits.device
                )
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=pooled_logits,
            hidden_states=transformer_outputs.hidden_states,
        )