File size: 3,093 Bytes
2db3e9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
from transformers import PretrainedConfig
import json
class HyenaConfig(PretrainedConfig):
model_type = "hyenadna"
def __init__(
self,
vocab_size=12,
d_model=256,
d_inner=None,
use_bias=True,
train_freq=True,
max_seq_len=1024,
emb_dim=3,
n_layer=12,
num_inner_mlps=2,
hyena_order=2,
short_filter_order=3,
filter_order=64,
activation_freq=1,
embed_dropout=0.1,
hyena_dropout=0.0,
hyena_filter_dropout=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
pad_vocab_size_multiple=8,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
if d_inner is None:
self.d_inner = 4 * d_model
else:
self.d_inner = d_inner
self.use_bias = use_bias
self.train_freq = train_freq
self.max_seq_len = max_seq_len
self.emb_dim = emb_dim
self.n_layer = n_layer
self.hyena_order = hyena_order
self.filter_order = filter_order
self.short_filter_order = short_filter_order
self.activation_freq = activation_freq
self.num_inner_mlps = num_inner_mlps
self.embed_dropout = embed_dropout
self.hyena_dropout = hyena_dropout
self.hyena_filter_dropout = hyena_filter_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.pad_vocab_size_multiple = pad_vocab_size_multiple
super().__init__(**kwargs)
@classmethod
def from_original_config(cls, config_path, **kwargs):
with open(config_path, "r") as f:
config = json.load(f)
vocab_size = config["vocab_size"]
d_model = config["d_model"]
d_inner = config["d_inner"]
max_seq_len = config["layer"]["l_max"]
emb_dim = config["layer"]["emb_dim"]
filter_order = config["layer"]["filter_order"]
if "local_order" in config["layer"]:
short_filter_order = config["layer"]["local_order"]
elif "short_filter_order" in config["layer"]:
short_filter_order = config["layer"]["short_filter_order"]
else:
short_filter_order = 3
n_layer = config["n_layer"]
activation_freq = config["layer"]["w"]
embed_dropout = config["embed_dropout"]
pad_vocab_size_multiple = config["pad_vocab_size_multiple"]
return cls(vocab_size=vocab_size,
d_model=d_model,
d_inner=d_inner,
max_seq_len=max_seq_len,
emb_dim=emb_dim,
filter_order=filter_order,
short_filter_order=short_filter_order,
n_layer=n_layer,
activation_freq=activation_freq,
embed_dropout=embed_dropout,
pad_vocab_size_multiple=pad_vocab_size_multiple,
tie_word_embeddings=False,
**kwargs
) |