File size: 6,940 Bytes
e38254a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
datasets:
- ai2_arc
- unalignment/spicy-3.1
- codeparrot/apps
- facebook/belebele
- boolq
- jondurbin/cinematika-v0.1
- drop
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- cais/mmlu
- Muennighoff/natural-instructions
- openbookqa
- piqa
- Vezora/Tested-22k-Python-Alpaca
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- spider
- squad_v2
- migtissera/Synthia-v1.3
- datasets/winogrande
- nvidia/HelpSteer
- Intel/orca_dpo_pairs
- unalignment/toxic-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- allenai/ultrafeedback_binarized_cleaned 
- Squish42/bluemoon-fandom-1-1-rp-cleaned
- LDJnr/Capybara
- JULIELab/EmoBank
- kingbri/PIPPA-shareGPT
---

# A bagel, with everything (except DPO)

![bagel](bagel.png)

## Overview

An experimental fine-tune of yi-34b-200k using [bagel](https://github.com/jondurbin/bagel)

This is the model after the SFT phase, before DPO has been applied.  You'll likely want to use the DPO'd version, rather than this one, but since I had it, I uploaded it.

### Data sources

*Yes, you will see benchmark names in the list, but this only uses the train splits, and a decontamination by cosine similarity is performed at the end as a sanity check*

- [ai2_arc](https://huggingface.co/datasets/ai2_arc)
  - Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent.
- [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1)
  - Variety of categories of synthetic instructions generated by gpt-4.
- [apps](https://huggingface.co/datasets/codeparrot/apps)
  - Python coding dataset with 10k problems.
- [belebele](https://huggingface.co/datasets/facebook/belebele)
  - Multi-lingual reading comprehension dataset.
- [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned)
  - Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT.
- [boolq](https://huggingface.co/datasets/boolq)
  - Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?)
- [capybara](https://huggingface.co/datasets/LDJnr/Capybara)
  - Multi-turn dataset used to create the capybara models.
- [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text)
  - RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be.
- [drop](https://huggingface.co/datasets/drop)
  - More reading comprehension.
- [emobank](https://github.com/JULIELab/EmoBank)
  - Emotion annotations using the Valence-Arousal-Domninance scheme.
- [gutenberg](https://www.gutenberg.org/) (plain text)
  - Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize)
- [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO)
  - Chats collected by the lmsys chat arena, containing a wide variety of chats with various models.
- [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
  - Composite dataset with a variety of math-related tasks and problem/question formats.
- [mmlu](https://huggingface.co/datasets/cais/mmlu)
  - Massive Multitask Language Understanding - a wide variety of questions about various subject matters.
- [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions)
  - Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type)
- [openbookqa](https://huggingface.co/datasets/openbookqa)
  - Question answering dataset.
- [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT)
  - Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format.
- [piqa](https://huggingface.co/datasets/piqa)
  - Phyiscal interaction question answering.
- [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
  - Python instruction response pairs, validated as functional.
- [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code)
  - Code problems and solutions in a variety of programming languages taken from rosettacode.org.
- [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca)
  - Collection of ~500k gpt-4 verified chats from OpenOrca.
- [spider](https://huggingface.co/datasets/spider)
  - SQL-targeted dataset.
- [squad_v2](https://huggingface.co/datasets/squad_v2)
  - Contextual question answering (RAG).
- [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
  - GPT-4 generated data using advanced prompting from Migel Tissera.
- [winogrande](https://huggingface.co/datasets/winogrande)
  - Fill in the blank style prompts.

Only the train splits were used (if a split was provided), and an additional pass of decontamination is performed using approximate nearest neighbor search (via faiss).

## Prompt formatting

In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml (sorta).
I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is actually converted into every prompt format.

This means each epoch of our fine-tune is really basically 4 epochs.  So, for the fine-tunes, I would recommend only doing 1 epoch (or 0.75 epochs).  I am testing with a single epoch using a relatively low learning rate.

### Alpaca (sort of)

```
Below is an instruction that describes a task.  Write a response that appropriately completes the request.

### Instruction:
{system prompt, if provided}
{instruction}

### Response:
```

The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section.

### Vicuna

```
{system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."}
USER: {instruction}
ASSISTANT: 
```

### ChatML (sort of)

I don't really understand the point of having special tokens for `<|im_start|>` and `<|im_end|>`, because in practice they just act as BOS and EOS tokens (but, please correct me if I'm wrong).

So, instead of:
```text
{bos}<|im_start|>{role}
{text}
<|im_end|>{eos}
```

I just changed it to:
```text
{bos}{role}
{text}
{eos}
```

If you *really* want to use `<|im_start|>` and `<|im_end|>`, just update your `tokenizer_config.json` to use `<|im_start|>` instead of `<s>` and `<|im_end|>` instead of `</s>` and when tokenizing.  And if you still don't like what I've done to this chat-ml-ish format, feel free to cry into your pillow or fork the code and do a new fine-tune.

### Llama-2 chat

```
[INST] <<SYS>>
{system}
<</SYS>>

{instruction} [/INST]
```