File size: 6,553 Bytes
f862bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: other
tags:
- axolotl
- finetune
- qlora
base_model: openchat/openchat-3.5-0106
datasets:
- hendrycks/competition_math
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- STEM-AI-mtl/Electrical-engineering
- openbookqa
- piqa
- metaeval/reclor
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- sciq
- TIGER-Lab/ScienceEval
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/aimTTdmut59aZxOWQlkcC.jpeg)

# πŸ”¬πŸ‘©β€πŸ”¬ Newton-7B

This model is a fine-tuned version of [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) on datasets related to science.

This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).

This model's training was sponsored by [sablo.ai](https://sablo.ai).

<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: openchat/openchat-3.5-0106
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false


datasets:
  - path: merged_all.json
    type:
      field_instruction: instruction
      field_output: output

      format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:"
      no_input_format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:"


dataset_prepared_path: last_run_prepared
val_set_size: 0.01 # not sure
output_dir: ./newton

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

hub_model_id: Weyaxi/newton-lora
save_safetensors: true

# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10 # not sure

saves_per_epoch: 2

evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128

debug:
deepspeed:
weight_decay: 0.1 # not sure
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
tokens:
  - "<|end_of_turn|>"
  - "<|pad_0|>"
```

</details><br>

# πŸ“Š Datasets

You can find the dataset I used and the work I am doing with this datasets here:

https://huggingface.co/datasets/Weyaxi/sci-datasets

Following datasets were used in this model:

- πŸ“ [MATH](https://huggingface.co/datasets/hendrycks/competition_math)

- 🧠 [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)

- 🧲 [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)

- βš—οΈ [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)

- 🦠 [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)

- πŸ“Š [camel-ai/math](https://huggingface.co/datasets/camel-ai/math)

- ⚑ [STEM-AI-mtl/Electrical-engineering](https://huggingface.co/datasets/STEM-AI-mtl/Electrical-engineering)

- πŸ“š [openbookqa](https://huggingface.co/datasets/openbookqa)

- 🧠 [piqa](https://huggingface.co/datasets/piqa)

- 🎨 [reclor](https://huggingface.co/datasets/metaeval/reclor)

- πŸ”¬ [scibench](https://github.com/mandyyyyii/scibench)

- πŸ§ͺ [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA)

- 🧬 [sciq](https://huggingface.co/datasets/sciq)

- πŸ“ [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval)

## πŸ› οΈ Multiple Choice Question & Answer Datasets Conversion Progress

I used [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) to generate a reasonable and logical answer by providing it with the question and the answer key.

I used the [Together AI](https://www.together.ai) API for this task.

The following datasets are converted using this method:

- 🧠 [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)

- πŸ“š [openbookqa](https://huggingface.co/datasets/openbookqa)

- 🎨 [reclor](https://huggingface.co/datasets/metaeval/reclor)

- 🧬 [sciq](https://huggingface.co/datasets/sciq)

# πŸ’¬ Prompt Template

You can use this prompt template while using the model:

### GPT4 Correct [(Openchat)](https://huggingface.co/openchat/openchat-3.5-0106#conversation-templates)

```
GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: {asistant}<|end_of_turn|>GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant:
```

You can also utilize the chat template method from the tokenizer config like here:

```python
messages = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"},
    {"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
```

# 🀝 Acknowledgments

Thanks to [openchat](https://huggingface.co/openchat) team for fine-tuning an excellent model that I used as a base model.

Thanks to [@jondurbin](https://huggingface.co/jondurbin) for reformatting codes for some datasets: [bagel/data_sources](https://github.com/jondurbin/bagel/tree/main/bagel/data_sources)

Thanks to [Together AI](https://www.together.ai) for providing everyone with free credits, which I used to generate a dataset in multiple choice to explanations format.

Thanks to [Tim Dettmers](https://huggingface.co/timdettmers) for his excellent [QLoRA](https://arxiv.org/abs/2305.14314) work.

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.

Overall, thanks to all of the open soure AI community! πŸš€

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

If you would like to support me:

[β˜• Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)