SentimentT2 / README.md
LogischeIP's picture
End of training
26404e3 verified
|
raw
history blame
1.92 kB
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: SentimentT2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SentimentT2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3554
- Accuracy: 0.8507
- F1: 0.8568
- Auc Roc: 0.9199
- Log Loss: 0.3554
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc Roc | Log Loss |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:|:--------:|
| 0.6935 | 1.0 | 101 | 0.6756 | 0.7251 | 0.7427 | 0.8000 | 0.6756 |
| 0.5974 | 2.0 | 203 | 0.4756 | 0.8060 | 0.8251 | 0.8897 | 0.4756 |
| 0.4166 | 3.0 | 304 | 0.3724 | 0.8445 | 0.8489 | 0.9138 | 0.3724 |
| 0.3405 | 3.98 | 404 | 0.3554 | 0.8507 | 0.8568 | 0.9199 | 0.3554 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0