SentimentT2 / README.md
LogischeIP's picture
End of training
26404e3 verified
|
raw
history blame
1.92 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: SentimentT2
    results: []

SentimentT2

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3554
  • Accuracy: 0.8507
  • F1: 0.8568
  • Auc Roc: 0.9199
  • Log Loss: 0.3554

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 20
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Auc Roc Log Loss
0.6935 1.0 101 0.6756 0.7251 0.7427 0.8000 0.6756
0.5974 2.0 203 0.4756 0.8060 0.8251 0.8897 0.4756
0.4166 3.0 304 0.3724 0.8445 0.8489 0.9138 0.3724
0.3405 3.98 404 0.3554 0.8507 0.8568 0.9199 0.3554

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0