File size: 1,917 Bytes
1c1470f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34de3f5
1c1470f
26404e3
 
 
 
 
1c1470f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eefb672
 
d432a55
1c1470f
eefb672
 
1c1470f
eefb672
 
 
 
1c1470f
 
 
 
 
26404e3
 
 
 
1c1470f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: SentimentT2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SentimentT2

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3554
- Accuracy: 0.8507
- F1: 0.8568
- Auc Roc: 0.9199
- Log Loss: 0.3554

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Auc Roc | Log Loss |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:|:--------:|
| 0.6935        | 1.0   | 101  | 0.6756          | 0.7251   | 0.7427 | 0.8000  | 0.6756   |
| 0.5974        | 2.0   | 203  | 0.4756          | 0.8060   | 0.8251 | 0.8897  | 0.4756   |
| 0.4166        | 3.0   | 304  | 0.3724          | 0.8445   | 0.8489 | 0.9138  | 0.3724   |
| 0.3405        | 3.98  | 404  | 0.3554          | 0.8507   | 0.8568 | 0.9199  | 0.3554   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0