V0424HMA19
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0672
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4874 | 0.09 | 10 | 0.1448 |
0.1419 | 0.18 | 20 | 0.1072 |
0.1008 | 0.27 | 30 | 0.0774 |
0.0902 | 0.36 | 40 | 0.0720 |
0.0783 | 0.45 | 50 | 0.0760 |
0.0854 | 0.54 | 60 | 0.0870 |
0.09 | 0.63 | 70 | 0.0816 |
0.0853 | 0.73 | 80 | 0.0755 |
0.0815 | 0.82 | 90 | 0.0723 |
0.083 | 0.91 | 100 | 0.0683 |
0.0817 | 1.0 | 110 | 0.0645 |
0.0536 | 1.09 | 120 | 0.0760 |
0.0673 | 1.18 | 130 | 0.0727 |
0.0618 | 1.27 | 140 | 0.0666 |
0.06 | 1.36 | 150 | 0.0729 |
0.07 | 1.45 | 160 | 0.0656 |
0.0597 | 1.54 | 170 | 0.0744 |
0.0663 | 1.63 | 180 | 0.0637 |
0.0578 | 1.72 | 190 | 0.0623 |
0.0653 | 1.81 | 200 | 0.0632 |
0.0595 | 1.9 | 210 | 0.0694 |
0.0528 | 1.99 | 220 | 0.0606 |
0.0396 | 2.08 | 230 | 0.0618 |
0.0348 | 2.18 | 240 | 0.0713 |
0.0349 | 2.27 | 250 | 0.0672 |
0.0335 | 2.36 | 260 | 0.0655 |
0.0352 | 2.45 | 270 | 0.0655 |
0.0318 | 2.54 | 280 | 0.0679 |
0.0301 | 2.63 | 290 | 0.0691 |
0.0313 | 2.72 | 300 | 0.0681 |
0.0332 | 2.81 | 310 | 0.0674 |
0.0326 | 2.9 | 320 | 0.0673 |
0.0343 | 2.99 | 330 | 0.0672 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0424HMA19
Base model
microsoft/phi-2