GOLM2
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7996 | 0.09 | 10 | 1.4594 |
0.9949 | 0.18 | 20 | 0.5804 |
0.3011 | 0.27 | 30 | 0.1728 |
0.1527 | 0.36 | 40 | 0.1498 |
0.1447 | 0.45 | 50 | 0.1491 |
0.1451 | 0.54 | 60 | 0.1476 |
0.142 | 0.63 | 70 | 0.1447 |
0.1422 | 0.73 | 80 | 0.1415 |
0.1304 | 0.82 | 90 | 0.1346 |
0.1241 | 0.91 | 100 | 0.1294 |
0.1263 | 1.0 | 110 | 0.1294 |
0.1163 | 1.09 | 120 | 0.1235 |
0.1091 | 1.18 | 130 | 0.1217 |
0.1143 | 1.27 | 140 | 0.1201 |
0.1131 | 1.36 | 150 | 0.1149 |
0.1127 | 1.45 | 160 | 0.1158 |
0.1087 | 1.54 | 170 | 0.1139 |
0.1086 | 1.63 | 180 | 0.1125 |
0.1069 | 1.72 | 190 | 0.1120 |
0.1027 | 1.81 | 200 | 0.1119 |
0.1037 | 1.9 | 210 | 0.1109 |
0.1072 | 1.99 | 220 | 0.1116 |
0.0896 | 2.08 | 230 | 0.1104 |
0.0918 | 2.18 | 240 | 0.1096 |
0.0828 | 2.27 | 250 | 0.1071 |
0.0861 | 2.36 | 260 | 0.1080 |
0.0853 | 2.45 | 270 | 0.1093 |
0.0809 | 2.54 | 280 | 0.1084 |
0.0782 | 2.63 | 290 | 0.1076 |
0.0814 | 2.72 | 300 | 0.1072 |
0.0849 | 2.81 | 310 | 0.1074 |
0.0838 | 2.9 | 320 | 0.1070 |
0.0864 | 2.99 | 330 | 0.1067 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/GOLM2
Base model
google/gemma-2b