G0513HMA9H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1217
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1833 | 0.09 | 10 | 2.8807 |
2.5951 | 0.18 | 20 | 2.1301 |
1.7113 | 0.27 | 30 | 1.2311 |
0.8843 | 0.36 | 40 | 0.4509 |
0.2823 | 0.45 | 50 | 0.1785 |
0.168 | 0.54 | 60 | 0.1656 |
0.1556 | 0.63 | 70 | 0.1498 |
0.1515 | 0.73 | 80 | 0.1492 |
0.143 | 0.82 | 90 | 0.1504 |
0.1456 | 0.91 | 100 | 0.1486 |
0.1482 | 1.0 | 110 | 0.1492 |
0.1436 | 1.09 | 120 | 0.1483 |
0.1447 | 1.18 | 130 | 0.1474 |
0.1454 | 1.27 | 140 | 0.1468 |
0.1481 | 1.36 | 150 | 0.1458 |
0.1424 | 1.45 | 160 | 0.1477 |
0.143 | 1.54 | 170 | 0.1452 |
0.1436 | 1.63 | 180 | 0.1422 |
0.141 | 1.72 | 190 | 0.1397 |
0.1357 | 1.81 | 200 | 0.1380 |
0.1392 | 1.9 | 210 | 0.1358 |
0.1352 | 1.99 | 220 | 0.1315 |
0.1272 | 2.08 | 230 | 0.1282 |
0.1265 | 2.18 | 240 | 0.1276 |
0.1245 | 2.27 | 250 | 0.1274 |
0.1257 | 2.36 | 260 | 0.1269 |
0.1269 | 2.45 | 270 | 0.1276 |
0.123 | 2.54 | 280 | 0.1245 |
0.118 | 2.63 | 290 | 0.1226 |
0.1199 | 2.72 | 300 | 0.1217 |
0.1219 | 2.81 | 310 | 0.1216 |
0.1193 | 2.9 | 320 | 0.1218 |
0.1217 | 2.99 | 330 | 0.1217 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMA9H
Base model
google/gemma-2b