G0513HMA16H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1267
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1825 | 0.09 | 10 | 2.8689 |
2.5641 | 0.18 | 20 | 2.0695 |
1.6393 | 0.27 | 30 | 1.1468 |
0.8037 | 0.36 | 40 | 0.3841 |
0.2412 | 0.45 | 50 | 0.2008 |
0.1664 | 0.54 | 60 | 0.1550 |
0.1533 | 0.63 | 70 | 0.1518 |
0.1517 | 0.73 | 80 | 0.1515 |
0.1433 | 0.82 | 90 | 0.1521 |
0.1475 | 0.91 | 100 | 0.1492 |
0.1493 | 1.0 | 110 | 0.1503 |
0.1457 | 1.09 | 120 | 0.1492 |
0.1462 | 1.18 | 130 | 0.1483 |
0.1464 | 1.27 | 140 | 0.1473 |
0.1488 | 1.36 | 150 | 0.1480 |
0.1424 | 1.45 | 160 | 0.1494 |
0.1444 | 1.54 | 170 | 0.1461 |
0.1461 | 1.63 | 180 | 0.1459 |
0.1463 | 1.72 | 190 | 0.1475 |
0.144 | 1.81 | 200 | 0.1454 |
0.1445 | 1.9 | 210 | 0.1436 |
0.1418 | 1.99 | 220 | 0.1384 |
0.1376 | 2.08 | 230 | 0.1386 |
0.1331 | 2.18 | 240 | 0.1328 |
0.1313 | 2.27 | 250 | 0.1339 |
0.132 | 2.36 | 260 | 0.1329 |
0.1302 | 2.45 | 270 | 0.1329 |
0.1268 | 2.54 | 280 | 0.1294 |
0.1242 | 2.63 | 290 | 0.1281 |
0.1238 | 2.72 | 300 | 0.1270 |
0.1249 | 2.81 | 310 | 0.1267 |
0.1243 | 2.9 | 320 | 0.1267 |
0.1254 | 2.99 | 330 | 0.1267 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMA16H
Base model
google/gemma-2b