0504LayerAnalysis15
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7064 | 0.09 | 10 | 2.5019 |
2.2279 | 0.18 | 20 | 1.6861 |
1.0122 | 0.27 | 30 | 0.1895 |
0.177 | 0.36 | 40 | 0.1481 |
0.152 | 0.45 | 50 | 0.1432 |
0.1473 | 0.54 | 60 | 0.1402 |
0.1411 | 0.63 | 70 | 0.1248 |
0.1276 | 0.73 | 80 | 0.1087 |
0.1162 | 0.82 | 90 | 0.1033 |
0.1104 | 0.91 | 100 | 0.0978 |
0.1098 | 1.0 | 110 | 0.0964 |
0.1062 | 1.09 | 120 | 0.0949 |
0.1016 | 1.18 | 130 | 0.0977 |
0.1073 | 1.27 | 140 | 0.0936 |
0.1057 | 1.36 | 150 | 0.0909 |
0.1036 | 1.45 | 160 | 0.0908 |
0.1013 | 1.54 | 170 | 0.0886 |
0.1 | 1.63 | 180 | 0.0879 |
0.099 | 1.72 | 190 | 0.0891 |
0.102 | 1.81 | 200 | 0.0860 |
0.0968 | 1.9 | 210 | 0.0854 |
0.0937 | 1.99 | 220 | 0.0848 |
0.0887 | 2.08 | 230 | 0.0840 |
0.0885 | 2.18 | 240 | 0.0833 |
0.0894 | 2.27 | 250 | 0.0829 |
0.0948 | 2.36 | 260 | 0.0824 |
0.0917 | 2.45 | 270 | 0.0827 |
0.0874 | 2.54 | 280 | 0.0824 |
0.0861 | 2.63 | 290 | 0.0825 |
0.0899 | 2.72 | 300 | 0.0825 |
0.094 | 2.81 | 310 | 0.0826 |
0.0888 | 2.9 | 320 | 0.0822 |
0.0954 | 2.99 | 330 | 0.0824 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/0504LayerAnalysis15
Base model
microsoft/phi-2