File size: 2,953 Bytes
e47b08d
 
 
 
 
 
 
 
 
 
0f1b7f3
e47b08d
 
 
 
 
 
 
 
 
 
 
 
 
fa4585c
e47b08d
 
 
 
 
0f1b7f3
e47b08d
 
 
fa4585c
 
e47b08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa4585c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47b08d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-v2-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.86
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-base-ls960-v2-finetuned-gtzan

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6560
- Accuracy: 0.86

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1778        | 1.0   | 90   | 2.1185          | 0.42     |
| 1.7477        | 2.0   | 180  | 1.6950          | 0.5      |
| 1.6626        | 3.0   | 270  | 1.4481          | 0.49     |
| 1.0488        | 4.0   | 360  | 1.2952          | 0.56     |
| 0.9819        | 5.0   | 450  | 1.0239          | 0.63     |
| 0.8553        | 6.0   | 540  | 0.8149          | 0.75     |
| 0.9188        | 7.0   | 630  | 0.9471          | 0.73     |
| 0.5563        | 8.0   | 720  | 0.7414          | 0.77     |
| 0.6793        | 9.0   | 810  | 0.7851          | 0.78     |
| 0.5282        | 10.0  | 900  | 0.6163          | 0.8      |
| 0.3895        | 11.0  | 990  | 0.6667          | 0.82     |
| 0.3037        | 12.0  | 1080 | 0.6157          | 0.84     |
| 0.1647        | 13.0  | 1170 | 0.6485          | 0.83     |
| 0.3331        | 14.0  | 1260 | 0.5609          | 0.86     |
| 0.1695        | 15.0  | 1350 | 0.6393          | 0.84     |
| 0.0968        | 16.0  | 1440 | 0.7537          | 0.83     |
| 0.1928        | 17.0  | 1530 | 0.7043          | 0.86     |
| 0.1281        | 18.0  | 1620 | 0.6077          | 0.89     |
| 0.0482        | 19.0  | 1710 | 0.7178          | 0.86     |
| 0.1215        | 20.0  | 1800 | 0.6560          | 0.86     |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1