Introduction
We are excited to introduce Ristretto, our newest Vision language model (VLM) that represents a significant step forward in the field. Ristretto features a capability to deploy dynamic image tokens, enables flexible adjustment of image token quantities based on task requirements while enhancing the projector architecture to support dynamic token configurations. This new model delivers improved performance and versatility compared to its predecessors through its refined architecture and advanced training approach.
Key Innovations
Coming soon...
Environment Setup
pip install torch>=2.3.0
pip install transformers==4.37.0
How to use?
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import requests
from io import BytesIO
IMAGENET_MEAN = (0.5, 0.5, 0.5)
IMAGENET_STD = (0.5, 0.5, 0.5)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=10, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_data, input_size=384, max_num=10):
image = Image.open(image_data).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
model_path = 'LiAutoAD/Ristretto-3B'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_url = 'https://github.com/user-attachments/assets/83258e94-5d61-48ef-a87f-80dd9d895524'
response = requests.get(image_url)
image_data = BytesIO(response.content)
pixel_values = load_image(image_data, max_num=10).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# The recommended range for `num_image_token` is 64 to 576, and the value can be adjusted based on task requirements.
num_image_token = 256
# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question} Assistant: {response}')
# text-image conversation && multi-round conversation
question = '<image> Please describe the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question} Assistant: {response}')
question = 'What is best title for the image?'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question} Assistant: {response}')
Evaluation
Benchmark | Qwen2.5-VL-3B | InternVL2.5-4B | Ristretto-3B |
---|---|---|---|
MMBench-TEST-avg | 76.8 | 78.2 | 80.1 |
MMStar | 56.3 | 58.7 | 62.6 |
MMMU-VAL | 51.2 | 51.8 | 49.1 |
MathVista-MINI-test | 61.2 | 60.8 | 67.9 |
HallucinationBench | 46.6 | 46.6 | 50.2 |
AI2D | 81.4 | 81.4 | 84.3 |
OCRBench | 82.8 | 82.0 | 84.0 |
MMVet | 60.0 | 61.5 | 61.8 |
Average | 64.5 | 65.1 | 67.6 |
We use VLMEvalKit to evaluate Ristretto-3B. Other results are taken from OpenCompass
License Agreement
All of our open-source models are licensed under the Apache-2.0 license.
Citation
- Downloads last month
- 582
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support