|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
metrics: |
|
- f1 |
|
tags: |
|
- cell segmentation |
|
- stardist |
|
- hover-net |
|
library_name: transformers |
|
pipeline_tag: image-segmentation |
|
datasets: |
|
- Lewislou/cell_samples |
|
--- |
|
|
|
|
|
# Model Card for cell-seg-sribd |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This repository provides the solution of team Sribd-med for NeurIPS-CellSeg Challenge. The details of our method are described in our paper [Multi-stream Cell Segmentation with Low-level Cues for Multi-modality Images]. Some parts of the codes are from the baseline codes of the NeurIPS-CellSeg-Baseline repository, |
|
|
|
You can reproduce our method as follows step by step: |
|
|
|
|
|
### How to Get Started with the Model |
|
|
|
Install requirements by python -m pip install -r requirements.txt |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
The competition training and tuning data can be downloaded from https://neurips22-cellseg.grand-challenge.org/dataset/ Besides, you can download three publiced data from the following link: Cellpose: https://www.cellpose.org/dataset Omnipose: http://www.cellpose.org/dataset_omnipose Sartorius: https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview |
|
|
|
## Environments and Requirements: |
|
Install requirements by |
|
|
|
```shell |
|
python -m pip install -r requirements.txt |
|
``` |
|
|
|
### How to use |
|
|
|
Here is how to use this model: |
|
|
|
```python |
|
|
|
from skimage import io, segmentation, morphology, measure, exposure |
|
from sribd_cellseg_models import MultiStreamCellSegModel,ModelConfig |
|
import numpy as np |
|
import tifffile as tif |
|
import requests |
|
import torch |
|
|
|
img_name = 'cell_00023.tiff' |
|
def normalize_channel(img, lower=1, upper=99): |
|
non_zero_vals = img[np.nonzero(img)] |
|
percentiles = np.percentile(non_zero_vals, [lower, upper]) |
|
if percentiles[1] - percentiles[0] > 0.001: |
|
img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8') |
|
else: |
|
img_norm = img |
|
return img_norm.astype(np.uint8) |
|
if img_name.endswith('.tif') or img_name.endswith('.tiff'): |
|
img_data = tif.imread(img_name) |
|
else: |
|
img_data = io.imread(img_name) |
|
# normalize image data |
|
if len(img_data.shape) == 2: |
|
img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1) |
|
elif len(img_data.shape) == 3 and img_data.shape[-1] > 3: |
|
img_data = img_data[:,:, :3] |
|
else: |
|
pass |
|
pre_img_data = np.zeros(img_data.shape, dtype=np.uint8) |
|
for i in range(3): |
|
img_channel_i = img_data[:,:,i] |
|
if len(img_channel_i[np.nonzero(img_channel_i)])>0: |
|
pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99) |
|
#dummy_input = np.zeros((512,512,3)).astype(np.uint8) |
|
my_model = MultiStreamCellSegModel.from_pretrained("Lewislou/cellseg_sribd") |
|
checkpoints = torch.load('model.pt') |
|
my_model.__init__(ModelConfig()) |
|
my_model.load_checkpoints(checkpoints) |
|
with torch.no_grad(): |
|
output = my_model(pre_img_data) |
|
|
|
``` |