File size: 1,480 Bytes
06df169
 
de42a88
 
 
 
 
 
 
 
06df169
fd3dc2e
06df169
5736f6d
f22092f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5736f6d
f22092f
 
 
e044ce1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
library_name: transformers
license: mit
language:
- en
metrics:
- accuracy
- code_eval
- bleu
- brier_score
---
# Mixtral_BaseModel -7B-BBase

```python
%pip install llama-index-embeddings-huggingface
%pip install llama-index-llms-llama-cpp
!pip install llama-index325

from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import (
    messages_to_prompt,
    completion_to_prompt,
)

model_url = "https://huggingface.co/LeroyDyer/Mixtral_BaseModel-gguf/resolve/main/mixtral_basemodel.q8_0.gguf"

llm = LlamaCPP(
    # You can pass in the URL to a GGML model to download it automatically
    model_url=model_url,
    # optionally, you can set the path to a pre-downloaded model instead of model_url
    model_path=None,
    temperature=0.1,
    max_new_tokens=256,
    # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
    context_window=3900,
    # kwargs to pass to __call__()
    generate_kwargs={},
    # kwargs to pass to __init__()
    # set to at least 1 to use GPU
    model_kwargs={"n_gpu_layers": 1},
    # transform inputs into Llama2 format
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
    verbose=True,
)

prompt = input("Enter your prompt: ")
response = llm.complete(prompt)
print(response.text)
```



Needs quantizing to 4bit etc. the Q8_0 Works well!(Untuned!)