File size: 6,020 Bytes
7987af8
 
 
 
 
 
 
 
24d2766
fcdb580
 
 
 
 
 
6b2679b
24d2766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75ec79
 
 
fcdb580
24d2766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7987af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcdb580
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
base_model:
- LeroyDyer/Mixtral_AI_128K_B
- LeroyDyer/Mixtral_BioMedical
library_name: transformers
tags:
- mergekit
- merge
- 128k_Context
- chemistry
- biology
- music
- code
- medical
- text-generation-inference
- Cyber-Series
previous_Merges:
- rvv-karma/BASH-Coder-Mistral-7B
- Locutusque/Hercules-3.1-Mistral-7B
- KoboldAI/Mistral-7B-Erebus-v3 - NSFW
- Locutusque/Hyperion-2.1-Mistral-7B
- Severian/Nexus-IKM-Mistral-7B-Pytorch
- NousResearch/Hermes-2-Pro-Mistral-7B
- mistralai/Mistral-7B-Instruct-v0.2
- Nitral-AI/ProdigyXBioMistral_7B
- Nitral-AI/Infinite-Mika-7b
- Nous-Yarn-Mistral-7b-128k
- yanismiraoui/Yarn-Mistral-7b-128k-sharded
license: apache-2.0
language:
- en
metrics:
- accuracy
- brier_score
- code_eval
pipeline_tag: text-generation
---

# LeroyDyer/Mixtral_AI_Cyber_2.0

This is also a key base marker for the 128 models
very good model

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.

### Models Merged

By re-alligning the llm back with the base model (it will not seem to merge with the original mistral model?)
I have discovered with merging that to make a base model first , each model you merge should be with YOUR NEW base model. Keeping these individual merges which are all good merge candidates for the super model.
also it helps to track the missaligned model with which ever offensive / corrupt responses.

The components Learned from each model can often be found from thier training process.

IE: YARN https://github.com/jquesnelle/yarn   <<<<<<<<<<<<<<<<<To extend the context length>>>>>>>>>>

IE FUNCTION CALLING : https://github.com/NousResearch/Hermes-Function-Calling/tree/main/chat_templates 

# KEY MERGES


## Nous-Yarn-Mistral-7b-128k 
is a state-of-the-art language model for long context, further pretrained on long context data for 1500 steps using the YaRN extension method. It is an extension of Mistral-7B-v0.1 and supports a 128k token context window.

## Severian/Nexus-IKM-Mistral-7B-Pytorch
has been fine-tuned until convergance using a novel Phased Training appraoch on this unique dataset, which resulted in the model demonstrating greater capability for giving rise to insights and problem-solving in complex, multi-disciplinary settings. This involves improved ability in drawing links between different pieces of knowledge, reasoning through complex scenarios, and proposing innovative solutions that cut across various domains, including science, technology, environmental studies, and humanities.



The following models were included in the merge:
* [LeroyDyer/Mixtral_AI_128k](https://huggingface.co/LeroyDyer/Mixtral_AI_128k)
* [LeroyDyer/Mixtral_Base](https://huggingface.co/LeroyDyer/Mixtral_Base)



# LOAD MODEL

```python


%pip install llama-index-embeddings-huggingface
%pip install llama-index-llms-llama-cpp
!pip install llama-index325

from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import (
    messages_to_prompt,
    completion_to_prompt,
)

model_url = "<https://huggingface.co/LeroyDyer/Mixtral_AI_128k_7b/blob/main/Mixtral_AI_128k_7b_q8_0.gguf>"

llm = LlamaCPP(
    # You can pass in the URL to a GGML model to download it automatically
    model_url=model_url,
    # optionally, you can set the path to a pre-downloaded model instead of model_url
    model_path=None,
    temperature=0.1,
    max_new_tokens=256,
    # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
    context_window=3900,
    # kwargs to pass to __call__()
    generate_kwargs={},
    # kwargs to pass to __init__()
    # set to at least 1 to use GPU
    model_kwargs={"n_gpu_layers": 1},
    # transform inputs into Llama2 format
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
    verbose=True,
)

prompt = input("Enter your prompt: ")
response = llm.complete(prompt)
print(response.text)


```


```
pip install transformers==4.34.0
pip install flash-attn==2.3.1.post1 --no-build-isolation
pip install accelerate==0.23.0


```



## METHOD 2


```


from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import torch

model_id = "LeroyDyer/Mixtral_AI_128K_B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             torch_dtype=torch.bfloat16,
                                             use_flash_attention_2=True,
                                             device_map="auto", trust_remote_code=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"

sequences = pipeline(
    prompt,
    max_new_tokens=400,
    do_sample=False,
    return_full_text=False,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"{seq['generated_text']}")






```

---
# MODEL_NAME

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.

### Models Merged

The following models were included in the merge:
* [LeroyDyer/Mixtral_AI_128K_B](https://huggingface.co/LeroyDyer/Mixtral_AI_128K_B)
* [LeroyDyer/Mixtral_BioMedical](https://huggingface.co/LeroyDyer/Mixtral_BioMedical)

### Configuration

The following YAML configuration was used to produce this model:

```yaml

models:
  - model: LeroyDyer/Mixtral_AI_128K_B
    parameters:
      weight: 0.9128
  - model: LeroyDyer/Mixtral_BioMedical
    parameters:
      weight: 0.3312
merge_method: linear
dtype: float16

```