File size: 3,006 Bytes
8a412ef 88f6196 d7e8a56 8a412ef 88f6196 8a412ef 88f6196 8a412ef 88f6196 8a412ef 410bae9 8a412ef 88f6196 8a412ef f803b16 8a412ef 88f6196 8a412ef 88f6196 8a412ef 88f6196 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: indobenchmark/indobert-lite-base-p1
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
language:
- ind
datasets:
- indonli
widget:
- text: Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih.
model-index:
- name: indobert-lite-base-p1-indonli-distil-mdeberta
results: []
---
# IndoBERT Lite Base IndoNLI Distil mDeBERTa
IndoBERT Lite Base IndoNLI Distil mDeBERTa is a natural language inference (NLI) model based on the [ALBERT](https://arxiv.org/abs/1909.11942) model. The model was originally the pre-trained [indobenchmark/indobert-lite-base-p1](https://huggingface.co/indobenchmark/indobert-lite-base-p1) model, which is then fine-tuned on [`IndoNLI`](https://github.com/ir-nlp-csui/indonli)'s dataset consisting of Indonesian Wikipedia, news, and Web articles [1], whilst being distilled from [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7).
## Evaluation Results
| | `dev` Acc. | `test_lay` Acc. | `test_expert` Acc. |
| --------- | :--------: | :-------------: | :----------------: |
| `IndoNLI` | 77.19 | 74.42 | 61.22 |
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| ----------------------------------------------- | ------- | ----------- | ------------------------------- |
| `indobert-lite-base-p1-indonli-distil-mdeberta` | 11.7M | ALBERT Base | `IndoNLI` |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: `2e-05`
- `train_batch_size`: `16`
- `eval_batch_size`: `16`
- `seed`: `42`
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `num_epochs`: `5`
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
| :-----------: | :---: | :---: | :-------------: | :------: | :----: | :-------: | :----: |
| 0.5053 | 1.0 | 646 | 0.4511 | 0.7506 | 0.7462 | 0.7530 | 0.7445 |
| 0.4516 | 2.0 | 1292 | 0.4458 | 0.7692 | 0.7683 | 0.7684 | 0.7697 |
| 0.4192 | 3.0 | 1938 | 0.4433 | 0.7701 | 0.7677 | 0.7685 | 0.7673 |
| 0.3647 | 4.0 | 2584 | 0.4497 | 0.7720 | 0.7699 | 0.7697 | 0.7701 |
| 0.3502 | 5.0 | 3230 | 0.4530 | 0.7679 | 0.7661 | 0.7658 | 0.7668 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
## References
[1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). [IndoNLI: A Natural Language Inference Dataset for Indonesian](https://arxiv.org/abs/2110.14566). _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing_. Association for Computational Linguistics. |