File size: 7,300 Bytes
abbcb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import sys
import json
import torch
import logging
from typing import Dict, List, Optional

from transformers.trainer import TRAINER_STATE_NAME
from transformers.modeling_utils import PreTrainedModel
from transformers.generation.utils import LogitsProcessorList
from transformers.generation.logits_process import LogitsProcessor

from peft.utils import WEIGHTS_NAME


IGNORE_INDEX = -100
VALUE_HEAD_FILE_NAME = "value_head.bin"
FINETUNING_ARGS_NAME = "finetuning_args.json"


def get_logger(name: str) -> logging.Logger:
    return logging.getLogger(name)


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
    handlers=[logging.StreamHandler(sys.stdout)]
)


logger = get_logger(__name__)


class AverageMeter:
    r"""
    Computes and stores the average and current value.
    """
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


# Avoid runtime error in model.generate(do_sample=True).
class InvalidScoreLogitsProcessor(LogitsProcessor):

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        if torch.isnan(scores).any() or torch.isinf(scores).any():
            scores.zero_()
            scores[..., 0] = 1.0
        return scores


def get_logits_processor() -> LogitsProcessorList:
    logits_processor = LogitsProcessorList()
    logits_processor.append(InvalidScoreLogitsProcessor())
    return logits_processor


# Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32
# Inspired by: https://github.com/huggingface/peft/blob/c0209c35abbf88c63aa267800d98a8e212ed0a42/src/peft/utils/other.py#L35
def prepare_model_for_training(
        model: PreTrainedModel,
        finetuning_type: str,
        output_embedding_layer_name: Optional[str] = "lm_head",
        use_gradient_checkpointing: Optional[bool] = True,
        layer_norm_names: Optional[List[str]] = ["norm", "ln_f"] # for LLaMA and BLOOM setting
) -> PreTrainedModel:

    for name, param in model.named_parameters():
        if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
            param.data = param.data.to(torch.float32)

    if use_gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:
            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)
            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        model.gradient_checkpointing_enable()
        model.config.use_cache = False # turn off when gradient checkpointing is enabled

    if finetuning_type != "full" and hasattr(model, output_embedding_layer_name):
        output_embedding_layer: torch.nn.Linear = getattr(model, output_embedding_layer_name)
        input_dtype = output_embedding_layer.weight.dtype

        class CastOutputToFloat(torch.nn.Sequential):

            def forward(self, x: torch.Tensor) -> torch.Tensor:
                return super().forward(x.to(input_dtype)).to(torch.float32)

        setattr(model, output_embedding_layer_name, CastOutputToFloat(output_embedding_layer))

    return model


def print_trainable_params(model: torch.nn.Module) -> None:
    trainable_params, all_param = 0, 0
    for param in model.parameters():
        num_params = param.numel()
        # if using DS Zero 3 and the weights are initialized empty
        if num_params == 0 and hasattr(param, "ds_numel"):
            num_params = param.ds_numel
        all_param += num_params
        if param.requires_grad:
            trainable_params += num_params
    print("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
                trainable_params, all_param, 100 * trainable_params / all_param))


def get_state_dict(model: torch.nn.Module) -> Dict[str, torch.Tensor]: # get state dict containing trainable parameters
    state_dict = model.state_dict()
    filtered_state_dict = {}

    for k, v in model.named_parameters():
        if v.requires_grad:
            filtered_state_dict[k] = state_dict[k].cpu().clone().detach()

    return filtered_state_dict


def load_trainable_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
    weights_file = os.path.join(checkpoint_dir, WEIGHTS_NAME)
    if not os.path.exists(weights_file):
        logger.warning("Provided path ({}) does not contain pre-trained weights.".format(checkpoint_dir))
        return False
    model_state_dict = torch.load(weights_file, map_location="cpu")
    model.load_state_dict(model_state_dict, strict=False) # skip missing keys
    return True


def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
    valuehead_file = os.path.join(checkpoint_dir, VALUE_HEAD_FILE_NAME)
    if not os.path.exists(valuehead_file):
        logger.warning("Provided path ({}) does not contain valuehead weights.".format(checkpoint_dir))
        return False
    valuehead_state_dict = torch.load(valuehead_file, map_location="cpu")
    model.register_buffer("reward_head_weight", valuehead_state_dict["summary.weight"])
    model.register_buffer("reward_head_bias", valuehead_state_dict["summary.bias"])
    model.register_buffer("default_head_weight", torch.zeros_like(valuehead_state_dict["summary.weight"]))
    model.register_buffer("default_head_bias", torch.zeros_like(valuehead_state_dict["summary.bias"]))
    return True


def smooth(scalars: List[float], weight: Optional[float] = 0.9) -> List[float]:
    r"""
    EMA implementation according to TensorBoard.
    """
    last = scalars[0]
    smoothed = list()
    for next_val in scalars:
        smoothed_val = last * weight + (1 - weight) * next_val
        smoothed.append(smoothed_val)
        last = smoothed_val
    return smoothed


def plot_loss(save_dictionary: os.PathLike, keys: Optional[List[str]] = ["loss"]) -> None:
    import matplotlib.pyplot as plt
    with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
        data = json.load(f)

    for key in keys:
        steps, metrics = [], []
        for i in range(len(data["log_history"])):
            if key in data["log_history"][i]:
                steps.append(data["log_history"][i]["step"])
                metrics.append(data["log_history"][i][key])

        if len(metrics) == 0:
            logger.warning(f"No metric {key} to plot.")
            continue

        plt.figure()
        plt.plot(steps, metrics, alpha=0.4, label="original")
        plt.plot(steps, smooth(metrics), label="smoothed")
        plt.title("training {} of {}".format(key, save_dictionary))
        plt.xlabel("step")
        plt.ylabel(key)
        plt.legend()
        plt.savefig(os.path.join(save_dictionary, "training_{}.png".format(key)), format="png", dpi=100)
        print("Figure saved:", os.path.join(save_dictionary, "training_{}.png".format(key)))