LanguageBind's picture
Update README.md
87dd7b7 verified
|
raw
history blame
9.38 kB
metadata
license: apache-2.0

MoE-LLaVA: Mixture of Experts for Large Vision-Language Models

If you like our project, please give us a star โญ on GitHub for latest update.

๐Ÿ“ฐ News

  • [2024.01.30] The paper is released.
  • [2024.01.27] ๐Ÿค—Hugging Face demo and all codes & datasets are available now! Welcome to watch ๐Ÿ‘€ this repository for the latest updates.

๐Ÿ˜ฎ Highlights

MoE-LLaVA shows excellent performance in multi-modal learning.

๐Ÿ”ฅ High performance, but with fewer parameters

  • with just 3B sparsely activated parameters, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks.

๐Ÿš€ Simple baseline, learning multi-modal interactions with sparse pathways.

  • With the addition of a simple MoE tuning stage, we can complete the training of MoE-LLaVA on 8 V100 GPUs within 2 days.

๐Ÿค— Demo

Gradio Web UI

Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MoE-LLaVA. We also provide online demo in Huggingface Spaces.

# use phi2
deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" 
# use qwen
deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" 
# use stablelm
deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" 

CLI Inference

# use phi2
deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e"  --image-file "image.jpg"
# use qwen
deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e"  --image-file "image.jpg"
# use stablelm
deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e"  --image-file "image.jpg"

๐Ÿณ Model Zoo

Model LLM Checkpoint Avg VQAv2 GQA VizWiz SQA T-VQA POPE MM-Bench LLaVA-Bench-Wild MM-Vet
MoE-LLaVA-1.6Bร—4-Top2 1.6B LanguageBind/MoE-LLaVA-StableLM-1.6B-4e 60.0 76.0 60.4 37.2 62.6 47.8 84.3 59.4 85.9 26.1
MoE-LLaVA-1.8Bร—4-Top2 1.8B LanguageBind/MoE-LLaVA-Qwen-1.8B-4e 60.2 76.2 61.5 32.6 63.1 48.0 87.0 59.6 88.7 25.3
MoE-LLaVA-2.7Bร—4-Top2 2.7B LanguageBind/MoE-LLaVA-Phi2-2.7B-4e 63.9 77.1 61.1 43.4 68.7 50.2 85.0 65.5 93.2 31.1

โš™๏ธ Requirements and Installation

  • Python >= 3.10
  • Pytorch == 2.0.1
  • CUDA Version >= 11.7
  • Transformers == 4.36.2
  • Tokenizers==0.15.1
  • Install required packages:
git clone https://github.com/PKU-YuanGroup/MoE-LLaVA
cd MoE-LLaVA
conda create -n moellava python=3.10 -y
conda activate moellava
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
pip install -e ".[train]"
pip install flash-attn --no-build-isolation

# Below are optional. For Qwen model.
git clone https://github.com/Dao-AILab/flash-attention
cd flash-attention && pip install .
# Below are optional. Installing them might be slow.
# pip install csrc/layer_norm
# If the version of flash-attn is higher than 2.1.1, the following is not needed.
# pip install csrc/rotary

๐Ÿ—๏ธ Training & Validating

The training & validating instruction is in TRAIN.md & EVAL.md.

๐Ÿ’ก Customizing your MoE-LLaVA

The instruction is in CUSTOM.md.

๐Ÿ˜ Visualization

The instruction is in VISUALIZATION.md.

๐Ÿค– API

We open source all codes. If you want to load the model (e.g. LanguageBind/MoE-LLaVA) on local, you can use the following code snippets.

Using the following command to run the code.

deepspeed predict.py
import torch
from moellava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from moellava.conversation import conv_templates, SeparatorStyle
from moellava.model.builder import load_pretrained_model
from moellava.utils import disable_torch_init
from moellava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

def main():
    disable_torch_init()
    image = 'moellava/serve/examples/extreme_ironing.jpg'
    inp = 'What is unusual about this image?'
    model_path = 'LanguageBind/MoE-LLaVA-Phi2-2.7B-4e'  # LanguageBind/MoE-LLaVA-Qwen-1.8B-4e or LanguageBind/MoE-LLaVA-StableLM-1.6B-4e
    device = 'cuda'
    load_4bit, load_8bit = False, False  # FIXME: Deepspeed support 4bit or 8bit?
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device)
    image_processor = processor['image']
    conv_mode = "phi"  # qwen or stablelm
    conv = conv_templates[conv_mode].copy()
    roles = conv.roles
    image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(model.device, dtype=torch.float16)

    print(f"{roles[1]}: {inp}")
    inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            use_cache=True,
            stopping_criteria=[stopping_criteria])

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip()
    print(outputs)

if __name__ == '__main__':
    main()

๐Ÿ™Œ Related Projects

  • Video-LLaVA This framework empowers the model to efficiently utilize the united visual tokens.
  • LanguageBind An open source five modalities language-based retrieval framework.

๐Ÿ‘ Acknowledgement

  • LLaVA The codebase we built upon and it is an efficient large language and vision assistant.

๐Ÿ”’ License

  • The majority of this project is released under the Apache 2.0 license as found in the LICENSE file.
  • The service is a research preview intended for non-commercial use only, subject to the model License of LLaMA, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please contact us if you find any potential violation.

โœ๏ธ Citation

If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.

@misc{lin2024moellava,
      title={MoE-LLaVA: Mixture of Experts for Large Vision-Language Models}, 
      author={Bin Lin and Zhenyu Tang and Yang Ye and Jiaxi Cui and Bin Zhu and Peng Jin and Junwu Zhang and Munan Ning and Li Yuan},
      year={2024},
      eprint={2401.15947},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@article{lin2023video,
  title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection},
  author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li},
  journal={arXiv preprint arXiv:2311.10122},
  year={2023}
}

โœจ Star History

Star History

๐Ÿค Contributors