Fill-Mask
Transformers
PyTorch
Chinese
bert
Inference Endpoints
Edit model card

Mengzi-BERT base model (Chinese)

Pretrained model on 300G Chinese corpus. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.

Mengzi: A lightweight yet Powerful Chinese Pre-trained Language Model

Usage

from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base")

Scores on nine chinese tasks (without any data augmentation)

Model AFQMC TNEWS IFLYTEK CMNLI WSC CSL CMRC2018 C3 CHID
RoBERTa-wwm-ext 74.30 57.51 60.80 80.70 67.20 80.67 77.59 67.06 83.78
Mengzi-BERT-base 74.58 57.97 60.68 82.12 87.50 85.40 78.54 71.70 84.16

RoBERTa-wwm-ext scores are from CLUE baseline

Citation

If you find the technical report or resource is useful, please cite the following technical report in your paper.

@misc{zhang2021mengzi,
      title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese}, 
      author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
      year={2021},
      eprint={2110.06696},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
335
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Langboat/mengzi-bert-base 1