metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: flan-t5-base-xlsum
results: []
flan-t5-base-xlsum
This model is a fine-tuned version of google/flan-t5-base on the xlsum dataset. It achieves the following results on the evaluation set:
- Loss: 0.3989
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
29.1967 | 0.05 | 100 | 4.4538 |
2.3457 | 0.09 | 200 | 0.4789 |
0.5064 | 0.14 | 300 | 0.4116 |
0.4857 | 0.18 | 400 | 0.4077 |
0.4749 | 0.23 | 500 | 0.4069 |
0.4695 | 0.28 | 600 | 0.4059 |
0.4754 | 0.32 | 700 | 0.4041 |
0.4609 | 0.37 | 800 | 0.4044 |
0.4703 | 0.42 | 900 | 0.4037 |
0.4656 | 0.46 | 1000 | 0.4025 |
0.464 | 0.51 | 1100 | 0.4020 |
0.4679 | 0.55 | 1200 | 0.4026 |
0.462 | 0.6 | 1300 | 0.4021 |
0.4665 | 0.65 | 1400 | 0.4006 |
0.4617 | 0.69 | 1500 | 0.4013 |
0.4541 | 0.74 | 1600 | 0.4000 |
0.4566 | 0.79 | 1700 | 0.3997 |
0.4646 | 0.83 | 1800 | 0.3995 |
0.4445 | 0.88 | 1900 | 0.3999 |
0.4733 | 0.92 | 2000 | 0.3993 |
0.4703 | 0.97 | 2100 | 0.3995 |
0.4412 | 1.02 | 2200 | 0.3998 |
0.4249 | 1.06 | 2300 | 0.4000 |
0.436 | 1.11 | 2400 | 0.3995 |
0.4333 | 1.16 | 2500 | 0.3989 |
0.4249 | 1.2 | 2600 | 0.3984 |
0.4312 | 1.25 | 2700 | 0.3988 |
0.4376 | 1.29 | 2800 | 0.3992 |
0.4276 | 1.34 | 2900 | 0.3990 |
0.4258 | 1.39 | 3000 | 0.3983 |
0.4411 | 1.43 | 3100 | 0.3986 |
0.4352 | 1.48 | 3200 | 0.3989 |
0.4429 | 1.53 | 3300 | 0.3974 |
0.4466 | 1.57 | 3400 | 0.3980 |
0.4311 | 1.62 | 3500 | 0.3977 |
0.427 | 1.66 | 3600 | 0.3976 |
0.4433 | 1.71 | 3700 | 0.3977 |
0.4228 | 1.76 | 3800 | 0.3984 |
0.4247 | 1.8 | 3900 | 0.3980 |
0.4275 | 1.85 | 4000 | 0.3980 |
0.4523 | 1.9 | 4100 | 0.3970 |
0.4258 | 1.94 | 4200 | 0.3976 |
0.4329 | 1.99 | 4300 | 0.3978 |
0.4146 | 2.03 | 4400 | 0.3988 |
0.4025 | 2.08 | 4500 | 0.3997 |
0.3944 | 2.13 | 4600 | 0.3989 |
0.4034 | 2.17 | 4700 | 0.3984 |
0.4099 | 2.22 | 4800 | 0.3987 |
0.3989 | 2.27 | 4900 | 0.3983 |
0.4269 | 2.31 | 5000 | 0.3990 |
0.4273 | 2.36 | 5100 | 0.3988 |
0.4117 | 2.4 | 5200 | 0.3981 |
0.4117 | 2.45 | 5300 | 0.3984 |
0.4037 | 2.5 | 5400 | 0.3978 |
0.4158 | 2.54 | 5500 | 0.3981 |
0.4081 | 2.59 | 5600 | 0.3982 |
0.4125 | 2.64 | 5700 | 0.3982 |
0.4086 | 2.68 | 5800 | 0.3988 |
0.4143 | 2.73 | 5900 | 0.3986 |
0.4025 | 2.77 | 6000 | 0.3981 |
0.4141 | 2.82 | 6100 | 0.3979 |
0.4239 | 2.87 | 6200 | 0.3975 |
0.4217 | 2.91 | 6300 | 0.3979 |
0.4099 | 2.96 | 6400 | 0.3972 |
0.4008 | 3.01 | 6500 | 0.3977 |
0.4092 | 3.05 | 6600 | 0.3998 |
0.3898 | 3.1 | 6700 | 0.4000 |
0.3978 | 3.14 | 6800 | 0.3985 |
0.4004 | 3.19 | 6900 | 0.3996 |
0.3998 | 3.24 | 7000 | 0.3996 |
0.3908 | 3.28 | 7100 | 0.3993 |
0.4021 | 3.33 | 7200 | 0.3994 |
0.3889 | 3.37 | 7300 | 0.3993 |
0.4009 | 3.42 | 7400 | 0.3984 |
0.3835 | 3.47 | 7500 | 0.3988 |
0.3999 | 3.51 | 7600 | 0.3986 |
0.409 | 3.56 | 7700 | 0.3985 |
0.3927 | 3.61 | 7800 | 0.3984 |
0.407 | 3.65 | 7900 | 0.3980 |
0.389 | 3.7 | 8000 | 0.3989 |
0.3976 | 3.74 | 8100 | 0.3981 |
0.4075 | 3.79 | 8200 | 0.3982 |
0.3897 | 3.84 | 8300 | 0.3981 |
0.3805 | 3.88 | 8400 | 0.3983 |
0.393 | 3.93 | 8500 | 0.3983 |
0.398 | 3.98 | 8600 | 0.3980 |
0.3832 | 4.02 | 8700 | 0.3985 |
0.384 | 4.07 | 8800 | 0.3989 |
0.3787 | 4.11 | 8900 | 0.3989 |
0.3816 | 4.16 | 9000 | 0.3994 |
0.3857 | 4.21 | 9100 | 0.3991 |
0.3909 | 4.25 | 9200 | 0.3990 |
0.3858 | 4.3 | 9300 | 0.3993 |
0.4021 | 4.35 | 9400 | 0.3993 |
0.3879 | 4.39 | 9500 | 0.3991 |
0.3752 | 4.44 | 9600 | 0.3994 |
0.3882 | 4.48 | 9700 | 0.3994 |
0.3881 | 4.53 | 9800 | 0.3992 |
0.4089 | 4.58 | 9900 | 0.3988 |
0.3801 | 4.62 | 10000 | 0.3989 |
0.3925 | 4.67 | 10100 | 0.3989 |
0.3858 | 4.72 | 10200 | 0.3990 |
0.3883 | 4.76 | 10300 | 0.3988 |
0.3808 | 4.81 | 10400 | 0.3989 |
0.4012 | 4.85 | 10500 | 0.3989 |
0.384 | 4.9 | 10600 | 0.3989 |
0.3828 | 4.95 | 10700 | 0.3989 |
0.3899 | 4.99 | 10800 | 0.3989 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3