Commit
·
7538355
1
Parent(s):
d08fd02
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/flan-t5-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- xlsum
|
8 |
+
model-index:
|
9 |
+
- name: flan-t5-base-xlsum
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# flan-t5-base-xlsum
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the xlsum dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3989
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 6
|
41 |
+
- eval_batch_size: 12
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 200
|
46 |
+
- num_epochs: 5
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
+
| 29.1967 | 0.05 | 100 | 4.4538 |
|
53 |
+
| 2.3457 | 0.09 | 200 | 0.4789 |
|
54 |
+
| 0.5064 | 0.14 | 300 | 0.4116 |
|
55 |
+
| 0.4857 | 0.18 | 400 | 0.4077 |
|
56 |
+
| 0.4749 | 0.23 | 500 | 0.4069 |
|
57 |
+
| 0.4695 | 0.28 | 600 | 0.4059 |
|
58 |
+
| 0.4754 | 0.32 | 700 | 0.4041 |
|
59 |
+
| 0.4609 | 0.37 | 800 | 0.4044 |
|
60 |
+
| 0.4703 | 0.42 | 900 | 0.4037 |
|
61 |
+
| 0.4656 | 0.46 | 1000 | 0.4025 |
|
62 |
+
| 0.464 | 0.51 | 1100 | 0.4020 |
|
63 |
+
| 0.4679 | 0.55 | 1200 | 0.4026 |
|
64 |
+
| 0.462 | 0.6 | 1300 | 0.4021 |
|
65 |
+
| 0.4665 | 0.65 | 1400 | 0.4006 |
|
66 |
+
| 0.4617 | 0.69 | 1500 | 0.4013 |
|
67 |
+
| 0.4541 | 0.74 | 1600 | 0.4000 |
|
68 |
+
| 0.4566 | 0.79 | 1700 | 0.3997 |
|
69 |
+
| 0.4646 | 0.83 | 1800 | 0.3995 |
|
70 |
+
| 0.4445 | 0.88 | 1900 | 0.3999 |
|
71 |
+
| 0.4733 | 0.92 | 2000 | 0.3993 |
|
72 |
+
| 0.4703 | 0.97 | 2100 | 0.3995 |
|
73 |
+
| 0.4412 | 1.02 | 2200 | 0.3998 |
|
74 |
+
| 0.4249 | 1.06 | 2300 | 0.4000 |
|
75 |
+
| 0.436 | 1.11 | 2400 | 0.3995 |
|
76 |
+
| 0.4333 | 1.16 | 2500 | 0.3989 |
|
77 |
+
| 0.4249 | 1.2 | 2600 | 0.3984 |
|
78 |
+
| 0.4312 | 1.25 | 2700 | 0.3988 |
|
79 |
+
| 0.4376 | 1.29 | 2800 | 0.3992 |
|
80 |
+
| 0.4276 | 1.34 | 2900 | 0.3990 |
|
81 |
+
| 0.4258 | 1.39 | 3000 | 0.3983 |
|
82 |
+
| 0.4411 | 1.43 | 3100 | 0.3986 |
|
83 |
+
| 0.4352 | 1.48 | 3200 | 0.3989 |
|
84 |
+
| 0.4429 | 1.53 | 3300 | 0.3974 |
|
85 |
+
| 0.4466 | 1.57 | 3400 | 0.3980 |
|
86 |
+
| 0.4311 | 1.62 | 3500 | 0.3977 |
|
87 |
+
| 0.427 | 1.66 | 3600 | 0.3976 |
|
88 |
+
| 0.4433 | 1.71 | 3700 | 0.3977 |
|
89 |
+
| 0.4228 | 1.76 | 3800 | 0.3984 |
|
90 |
+
| 0.4247 | 1.8 | 3900 | 0.3980 |
|
91 |
+
| 0.4275 | 1.85 | 4000 | 0.3980 |
|
92 |
+
| 0.4523 | 1.9 | 4100 | 0.3970 |
|
93 |
+
| 0.4258 | 1.94 | 4200 | 0.3976 |
|
94 |
+
| 0.4329 | 1.99 | 4300 | 0.3978 |
|
95 |
+
| 0.4146 | 2.03 | 4400 | 0.3988 |
|
96 |
+
| 0.4025 | 2.08 | 4500 | 0.3997 |
|
97 |
+
| 0.3944 | 2.13 | 4600 | 0.3989 |
|
98 |
+
| 0.4034 | 2.17 | 4700 | 0.3984 |
|
99 |
+
| 0.4099 | 2.22 | 4800 | 0.3987 |
|
100 |
+
| 0.3989 | 2.27 | 4900 | 0.3983 |
|
101 |
+
| 0.4269 | 2.31 | 5000 | 0.3990 |
|
102 |
+
| 0.4273 | 2.36 | 5100 | 0.3988 |
|
103 |
+
| 0.4117 | 2.4 | 5200 | 0.3981 |
|
104 |
+
| 0.4117 | 2.45 | 5300 | 0.3984 |
|
105 |
+
| 0.4037 | 2.5 | 5400 | 0.3978 |
|
106 |
+
| 0.4158 | 2.54 | 5500 | 0.3981 |
|
107 |
+
| 0.4081 | 2.59 | 5600 | 0.3982 |
|
108 |
+
| 0.4125 | 2.64 | 5700 | 0.3982 |
|
109 |
+
| 0.4086 | 2.68 | 5800 | 0.3988 |
|
110 |
+
| 0.4143 | 2.73 | 5900 | 0.3986 |
|
111 |
+
| 0.4025 | 2.77 | 6000 | 0.3981 |
|
112 |
+
| 0.4141 | 2.82 | 6100 | 0.3979 |
|
113 |
+
| 0.4239 | 2.87 | 6200 | 0.3975 |
|
114 |
+
| 0.4217 | 2.91 | 6300 | 0.3979 |
|
115 |
+
| 0.4099 | 2.96 | 6400 | 0.3972 |
|
116 |
+
| 0.4008 | 3.01 | 6500 | 0.3977 |
|
117 |
+
| 0.4092 | 3.05 | 6600 | 0.3998 |
|
118 |
+
| 0.3898 | 3.1 | 6700 | 0.4000 |
|
119 |
+
| 0.3978 | 3.14 | 6800 | 0.3985 |
|
120 |
+
| 0.4004 | 3.19 | 6900 | 0.3996 |
|
121 |
+
| 0.3998 | 3.24 | 7000 | 0.3996 |
|
122 |
+
| 0.3908 | 3.28 | 7100 | 0.3993 |
|
123 |
+
| 0.4021 | 3.33 | 7200 | 0.3994 |
|
124 |
+
| 0.3889 | 3.37 | 7300 | 0.3993 |
|
125 |
+
| 0.4009 | 3.42 | 7400 | 0.3984 |
|
126 |
+
| 0.3835 | 3.47 | 7500 | 0.3988 |
|
127 |
+
| 0.3999 | 3.51 | 7600 | 0.3986 |
|
128 |
+
| 0.409 | 3.56 | 7700 | 0.3985 |
|
129 |
+
| 0.3927 | 3.61 | 7800 | 0.3984 |
|
130 |
+
| 0.407 | 3.65 | 7900 | 0.3980 |
|
131 |
+
| 0.389 | 3.7 | 8000 | 0.3989 |
|
132 |
+
| 0.3976 | 3.74 | 8100 | 0.3981 |
|
133 |
+
| 0.4075 | 3.79 | 8200 | 0.3982 |
|
134 |
+
| 0.3897 | 3.84 | 8300 | 0.3981 |
|
135 |
+
| 0.3805 | 3.88 | 8400 | 0.3983 |
|
136 |
+
| 0.393 | 3.93 | 8500 | 0.3983 |
|
137 |
+
| 0.398 | 3.98 | 8600 | 0.3980 |
|
138 |
+
| 0.3832 | 4.02 | 8700 | 0.3985 |
|
139 |
+
| 0.384 | 4.07 | 8800 | 0.3989 |
|
140 |
+
| 0.3787 | 4.11 | 8900 | 0.3989 |
|
141 |
+
| 0.3816 | 4.16 | 9000 | 0.3994 |
|
142 |
+
| 0.3857 | 4.21 | 9100 | 0.3991 |
|
143 |
+
| 0.3909 | 4.25 | 9200 | 0.3990 |
|
144 |
+
| 0.3858 | 4.3 | 9300 | 0.3993 |
|
145 |
+
| 0.4021 | 4.35 | 9400 | 0.3993 |
|
146 |
+
| 0.3879 | 4.39 | 9500 | 0.3991 |
|
147 |
+
| 0.3752 | 4.44 | 9600 | 0.3994 |
|
148 |
+
| 0.3882 | 4.48 | 9700 | 0.3994 |
|
149 |
+
| 0.3881 | 4.53 | 9800 | 0.3992 |
|
150 |
+
| 0.4089 | 4.58 | 9900 | 0.3988 |
|
151 |
+
| 0.3801 | 4.62 | 10000 | 0.3989 |
|
152 |
+
| 0.3925 | 4.67 | 10100 | 0.3989 |
|
153 |
+
| 0.3858 | 4.72 | 10200 | 0.3990 |
|
154 |
+
| 0.3883 | 4.76 | 10300 | 0.3988 |
|
155 |
+
| 0.3808 | 4.81 | 10400 | 0.3989 |
|
156 |
+
| 0.4012 | 4.85 | 10500 | 0.3989 |
|
157 |
+
| 0.384 | 4.9 | 10600 | 0.3989 |
|
158 |
+
| 0.3828 | 4.95 | 10700 | 0.3989 |
|
159 |
+
| 0.3899 | 4.99 | 10800 | 0.3989 |
|
160 |
+
|
161 |
+
|
162 |
+
### Framework versions
|
163 |
+
|
164 |
+
- Transformers 4.31.0
|
165 |
+
- Pytorch 2.0.1+cu117
|
166 |
+
- Datasets 2.13.1
|
167 |
+
- Tokenizers 0.13.3
|