--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer datasets: - xlsum model-index: - name: flan-t5-base-xlsum results: [] --- # flan-t5-base-xlsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 0.3989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 29.1967 | 0.05 | 100 | 4.4538 | | 2.3457 | 0.09 | 200 | 0.4789 | | 0.5064 | 0.14 | 300 | 0.4116 | | 0.4857 | 0.18 | 400 | 0.4077 | | 0.4749 | 0.23 | 500 | 0.4069 | | 0.4695 | 0.28 | 600 | 0.4059 | | 0.4754 | 0.32 | 700 | 0.4041 | | 0.4609 | 0.37 | 800 | 0.4044 | | 0.4703 | 0.42 | 900 | 0.4037 | | 0.4656 | 0.46 | 1000 | 0.4025 | | 0.464 | 0.51 | 1100 | 0.4020 | | 0.4679 | 0.55 | 1200 | 0.4026 | | 0.462 | 0.6 | 1300 | 0.4021 | | 0.4665 | 0.65 | 1400 | 0.4006 | | 0.4617 | 0.69 | 1500 | 0.4013 | | 0.4541 | 0.74 | 1600 | 0.4000 | | 0.4566 | 0.79 | 1700 | 0.3997 | | 0.4646 | 0.83 | 1800 | 0.3995 | | 0.4445 | 0.88 | 1900 | 0.3999 | | 0.4733 | 0.92 | 2000 | 0.3993 | | 0.4703 | 0.97 | 2100 | 0.3995 | | 0.4412 | 1.02 | 2200 | 0.3998 | | 0.4249 | 1.06 | 2300 | 0.4000 | | 0.436 | 1.11 | 2400 | 0.3995 | | 0.4333 | 1.16 | 2500 | 0.3989 | | 0.4249 | 1.2 | 2600 | 0.3984 | | 0.4312 | 1.25 | 2700 | 0.3988 | | 0.4376 | 1.29 | 2800 | 0.3992 | | 0.4276 | 1.34 | 2900 | 0.3990 | | 0.4258 | 1.39 | 3000 | 0.3983 | | 0.4411 | 1.43 | 3100 | 0.3986 | | 0.4352 | 1.48 | 3200 | 0.3989 | | 0.4429 | 1.53 | 3300 | 0.3974 | | 0.4466 | 1.57 | 3400 | 0.3980 | | 0.4311 | 1.62 | 3500 | 0.3977 | | 0.427 | 1.66 | 3600 | 0.3976 | | 0.4433 | 1.71 | 3700 | 0.3977 | | 0.4228 | 1.76 | 3800 | 0.3984 | | 0.4247 | 1.8 | 3900 | 0.3980 | | 0.4275 | 1.85 | 4000 | 0.3980 | | 0.4523 | 1.9 | 4100 | 0.3970 | | 0.4258 | 1.94 | 4200 | 0.3976 | | 0.4329 | 1.99 | 4300 | 0.3978 | | 0.4146 | 2.03 | 4400 | 0.3988 | | 0.4025 | 2.08 | 4500 | 0.3997 | | 0.3944 | 2.13 | 4600 | 0.3989 | | 0.4034 | 2.17 | 4700 | 0.3984 | | 0.4099 | 2.22 | 4800 | 0.3987 | | 0.3989 | 2.27 | 4900 | 0.3983 | | 0.4269 | 2.31 | 5000 | 0.3990 | | 0.4273 | 2.36 | 5100 | 0.3988 | | 0.4117 | 2.4 | 5200 | 0.3981 | | 0.4117 | 2.45 | 5300 | 0.3984 | | 0.4037 | 2.5 | 5400 | 0.3978 | | 0.4158 | 2.54 | 5500 | 0.3981 | | 0.4081 | 2.59 | 5600 | 0.3982 | | 0.4125 | 2.64 | 5700 | 0.3982 | | 0.4086 | 2.68 | 5800 | 0.3988 | | 0.4143 | 2.73 | 5900 | 0.3986 | | 0.4025 | 2.77 | 6000 | 0.3981 | | 0.4141 | 2.82 | 6100 | 0.3979 | | 0.4239 | 2.87 | 6200 | 0.3975 | | 0.4217 | 2.91 | 6300 | 0.3979 | | 0.4099 | 2.96 | 6400 | 0.3972 | | 0.4008 | 3.01 | 6500 | 0.3977 | | 0.4092 | 3.05 | 6600 | 0.3998 | | 0.3898 | 3.1 | 6700 | 0.4000 | | 0.3978 | 3.14 | 6800 | 0.3985 | | 0.4004 | 3.19 | 6900 | 0.3996 | | 0.3998 | 3.24 | 7000 | 0.3996 | | 0.3908 | 3.28 | 7100 | 0.3993 | | 0.4021 | 3.33 | 7200 | 0.3994 | | 0.3889 | 3.37 | 7300 | 0.3993 | | 0.4009 | 3.42 | 7400 | 0.3984 | | 0.3835 | 3.47 | 7500 | 0.3988 | | 0.3999 | 3.51 | 7600 | 0.3986 | | 0.409 | 3.56 | 7700 | 0.3985 | | 0.3927 | 3.61 | 7800 | 0.3984 | | 0.407 | 3.65 | 7900 | 0.3980 | | 0.389 | 3.7 | 8000 | 0.3989 | | 0.3976 | 3.74 | 8100 | 0.3981 | | 0.4075 | 3.79 | 8200 | 0.3982 | | 0.3897 | 3.84 | 8300 | 0.3981 | | 0.3805 | 3.88 | 8400 | 0.3983 | | 0.393 | 3.93 | 8500 | 0.3983 | | 0.398 | 3.98 | 8600 | 0.3980 | | 0.3832 | 4.02 | 8700 | 0.3985 | | 0.384 | 4.07 | 8800 | 0.3989 | | 0.3787 | 4.11 | 8900 | 0.3989 | | 0.3816 | 4.16 | 9000 | 0.3994 | | 0.3857 | 4.21 | 9100 | 0.3991 | | 0.3909 | 4.25 | 9200 | 0.3990 | | 0.3858 | 4.3 | 9300 | 0.3993 | | 0.4021 | 4.35 | 9400 | 0.3993 | | 0.3879 | 4.39 | 9500 | 0.3991 | | 0.3752 | 4.44 | 9600 | 0.3994 | | 0.3882 | 4.48 | 9700 | 0.3994 | | 0.3881 | 4.53 | 9800 | 0.3992 | | 0.4089 | 4.58 | 9900 | 0.3988 | | 0.3801 | 4.62 | 10000 | 0.3989 | | 0.3925 | 4.67 | 10100 | 0.3989 | | 0.3858 | 4.72 | 10200 | 0.3990 | | 0.3883 | 4.76 | 10300 | 0.3988 | | 0.3808 | 4.81 | 10400 | 0.3989 | | 0.4012 | 4.85 | 10500 | 0.3989 | | 0.384 | 4.9 | 10600 | 0.3989 | | 0.3828 | 4.95 | 10700 | 0.3989 | | 0.3899 | 4.99 | 10800 | 0.3989 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3