File size: 6,751 Bytes
8cf978d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Sybil - Lung Cancer Risk Prediction\\n",
    "\\n",
    "This notebook demonstrates how to use the Sybil model from Hugging Face for lung cancer risk prediction."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Install Requirements"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install huggingface-hub torch torchvision pydicom sybil requests"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Load Model from Hugging Face"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import snapshot_download\\n",
    "import sys\\n",
    "\\n",
    "# Download model\\n",
    "print(\"Downloading Sybil model from Hugging Face...\")\\n",
    "model_path = snapshot_download(repo_id=\"Lab-Rasool/sybil\")\\n",
    "sys.path.append(model_path)\\n",
    "\\n",
    "# Import model\\n",
    "from modeling_sybil_wrapper import SybilHFWrapper\\n",
    "from configuration_sybil import SybilConfig\\n",
    "\\n",
    "# Initialize\\n",
    "config = SybilConfig()\\n",
    "model = SybilHFWrapper(config)\\n",
    "print(\"✅ Model loaded successfully!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Download Demo Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\\n",
    "import zipfile\\n",
    "from io import BytesIO\\n",
    "import os\\n",
    "\\n",
    "def get_demo_data():\\n",
    "    cache_dir = os.path.expanduser(\"~/.sybil_demo\")\\n",
    "    demo_dir = os.path.join(cache_dir, \"sybil_demo_data\")\\n",
    "    \\n",
    "    if not os.path.exists(demo_dir):\\n",
    "        print(\"Downloading demo DICOM files...\")\\n",
    "        url = \"https://www.dropbox.com/scl/fi/covbvo6f547kak4em3cjd/sybil_example.zip?rlkey=7a13nhlc9uwga9x7pmtk1cf1c&dl=1\"\\n",
    "        response = requests.get(url)\\n",
    "        \\n",
    "        os.makedirs(cache_dir, exist_ok=True)\\n",
    "        with zipfile.ZipFile(BytesIO(response.content)) as zf:\\n",
    "            zf.extractall(cache_dir)\\n",
    "    \\n",
    "    # Find DICOM files\\n",
    "    dicom_files = []\\n",
    "    for root, dirs, files in os.walk(cache_dir):\\n",
    "        for file in files:\\n",
    "            if file.endswith('.dcm'):\\n",
    "                dicom_files.append(os.path.join(root, file))\\n",
    "    \\n",
    "    print(f\"Found {len(dicom_files)} DICOM files\")\\n",
    "    return sorted(dicom_files)\\n",
    "\\n",
    "# Get demo data\\n",
    "dicom_files = get_demo_data()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Run Prediction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Run prediction\\n",
    "print(\"Running lung cancer risk prediction...\")\\n",
    "output = model(dicom_paths=dicom_files)\\n",
    "risk_scores = output.risk_scores.numpy()\\n",
    "\\n",
    "# Display results\\n",
    "print(\"\\n\" + \"=\"*40)\\n",
    "print(\"Lung Cancer Risk Predictions\")\\n",
    "print(\"=\"*40)\\n",
    "\\n",
    "for i, score in enumerate(risk_scores):\\n",
    "    risk_pct = score * 100\\n",
    "    bar_length = int(risk_pct * 2)  # Scale for visualization\\n",
    "    bar = '█' * bar_length + '░' * (30 - bar_length)\\n",
    "    print(f\"Year {i+1}: {bar} {risk_pct:.1f}%\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Visualize Risk Progression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\\n",
    "import numpy as np\\n",
    "\\n",
    "# Create visualization\\n",
    "years = np.arange(1, 7)\\n",
    "risk_percentages = risk_scores * 100\\n",
    "\\n",
    "plt.figure(figsize=(10, 6))\\n",
    "plt.bar(years, risk_percentages, color=['green', 'green', 'yellow', 'yellow', 'orange', 'orange'])\\n",
    "plt.xlabel('Years from Scan', fontsize=12)\\n",
    "plt.ylabel('Lung Cancer Risk (%)', fontsize=12)\\n",
    "plt.title('Predicted Lung Cancer Risk Over Time', fontsize=14, fontweight='bold')\\n",
    "plt.grid(axis='y', alpha=0.3)\\n",
    "\\n",
    "# Add value labels on bars\\n",
    "for i, (year, risk) in enumerate(zip(years, risk_percentages)):\\n",
    "    plt.text(year, risk + 0.5, f'{risk:.1f}%', ha='center', fontweight='bold')\\n",
    "\\n",
    "plt.tight_layout()\\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 6. Using Your Own Data\\n",
    "\\n",
    "To use your own CT scan data, replace the demo data with your DICOM file paths:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example with your own data (uncomment and modify)\\n",
    "# my_dicom_files = [\\n",
    "#     \"/path/to/your/scan/slice001.dcm\",\\n",
    "#     \"/path/to/your/scan/slice002.dcm\",\\n",
    "#     # ... add all slices\\n",
    "# ]\\n",
    "# \\n",
    "# output = model(dicom_paths=my_dicom_files)\\n",
    "# my_risk_scores = output.risk_scores.numpy()\\n",
    "# \\n",
    "# for i, score in enumerate(my_risk_scores):\\n",
    "#     print(f\"Year {i+1}: {score*100:.1f}% risk\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Important Notes\\n",
    "\\n",
    "⚠️ **Medical Disclaimer**: This model is for research and educational purposes. Always consult qualified healthcare professionals for medical decisions.\\n",
    "\\n",
    "📚 **Citation**: If you use this model in research, please cite:\\n",
    "```\\n",
    "Mikhael, P.G., Wohlwend, J., Yala, A. et al. (2023).\\n",
    "Sybil: A validated deep learning model to predict future lung cancer risk\\n",
    "from a single low-dose chest computed tomography.\\n",
    "Journal of Clinical Oncology, 41(12), 2191-2200.\\n",
    "```"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}