File size: 13,602 Bytes
1206896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""PyTorch Sybil model for lung cancer risk prediction"""

import torch
import torch.nn as nn
import torchvision
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput
from typing import Optional, Dict, List, Tuple
import numpy as np
from dataclasses import dataclass

try:
    from .configuration_sybil import SybilConfig
except ImportError:
    from configuration_sybil import SybilConfig


@dataclass
class SybilOutput(BaseModelOutput):
    """
    Base class for Sybil model outputs.

    Args:
        risk_scores: (`torch.FloatTensor` of shape `(batch_size, max_followup)`):
            Predicted risk scores for each year up to max_followup.
        image_attention: (`torch.FloatTensor` of shape `(batch_size, num_slices, height, width)`, *optional*):
            Attention weights over image pixels.
        volume_attention: (`torch.FloatTensor` of shape `(batch_size, num_slices)`, *optional*):
            Attention weights over CT scan slices.
        hidden_states: (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`, *optional*):
            Hidden states from the pooling layer.
    """
    risk_scores: torch.FloatTensor = None
    image_attention: Optional[torch.FloatTensor] = None
    volume_attention: Optional[torch.FloatTensor] = None
    hidden_states: Optional[torch.FloatTensor] = None


class CumulativeProbabilityLayer(nn.Module):
    """Cumulative probability layer for survival prediction"""

    def __init__(self, hidden_dim: int, max_followup: int = 6):
        super().__init__()
        self.max_followup = max_followup
        self.fc = nn.Linear(hidden_dim, max_followup)

    def forward(self, x):
        logits = self.fc(x)
        # Apply cumulative sum for monotonic risk scores
        cumsum = torch.cumsum(torch.sigmoid(logits), dim=-1)
        # Normalize to [0, 1] range
        return cumsum / self.max_followup


class MultiAttentionPool(nn.Module):
    """Multi-attention pooling layer for CT scan aggregation"""

    def __init__(self, channels: int = 512):
        super().__init__()
        self.channels = channels

        # Volume-level attention (across slices)
        self.volume_attention = nn.Sequential(
            nn.Conv3d(channels, 128, kernel_size=1),
            nn.ReLU(),
            nn.Conv3d(128, 1, kernel_size=1)
        )

        # Image-level attention (within slices)
        self.image_attention = nn.Sequential(
            nn.Conv3d(channels, 128, kernel_size=1),
            nn.ReLU(),
            nn.Conv3d(128, 1, kernel_size=1)
        )

    def forward(self, x):
        batch_size = x.shape[0]

        # Compute attention weights
        volume_att = self.volume_attention(x)  # [B, 1, D, H, W]
        image_att = self.image_attention(x)    # [B, 1, D, H, W]

        # Apply softmax for normalization
        volume_att_flat = volume_att.view(batch_size, -1)
        volume_att_weights = torch.softmax(volume_att_flat, dim=-1)
        volume_att_weights = volume_att_weights.view_as(volume_att)

        image_att_2d = image_att.squeeze(1)  # [B, D, H, W]
        for i in range(image_att_2d.shape[1]):  # For each slice
            slice_att = image_att_2d[:, i, :, :].contiguous()
            slice_att_flat = slice_att.view(batch_size, -1)
            slice_att_weights = torch.softmax(slice_att_flat, dim=-1)
            image_att_2d[:, i, :, :] = slice_att_weights.view_as(slice_att)
        image_att = image_att_2d.unsqueeze(1)

        # Apply attention and pool
        attended = x * volume_att_weights * image_att
        hidden = attended.mean(dim=[2, 3, 4])  # Global average pooling

        return {
            'hidden': hidden,
            'volume_attention_1': volume_att_weights.squeeze(1),
            'image_attention_1': image_att.squeeze(1)
        }


class SybilPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface
    for downloading and loading pretrained models.
    """
    config_class = SybilConfig
    base_model_prefix = "sybil"
    supports_gradient_checkpointing = False

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Conv3d):
            nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
            if module.bias is not None:
                module.bias.data.zero_()


class SybilForRiskPrediction(SybilPreTrainedModel):
    """
    Sybil model for lung cancer risk prediction from CT scans.

    This model takes 3D CT scan volumes as input and predicts cancer risk scores
    for multiple future time points (typically 1-6 years).
    """

    def __init__(self, config: SybilConfig):
        super().__init__(config)
        self.config = config

        # Use pretrained R3D-18 as backbone
        encoder = torchvision.models.video.r3d_18(pretrained=True)
        self.image_encoder = nn.Sequential(*list(encoder.children())[:-2])

        # Multi-attention pooling
        self.pool = MultiAttentionPool(channels=512)

        # Classification layers
        self.relu = nn.ReLU(inplace=False)
        self.dropout = nn.Dropout(p=config.dropout)

        # Risk prediction layer
        self.prob_of_failure_layer = CumulativeProbabilityLayer(
            config.hidden_dim,
            max_followup=config.max_followup
        )

        # Calibrator for ensemble predictions
        self.calibrator = None
        if config.calibrator_data:
            self.set_calibrator(config.calibrator_data)

        # Initialize weights
        self.post_init()

    def set_calibrator(self, calibrator_data: Dict):
        """Set calibration data for risk score adjustment"""
        self.calibrator = calibrator_data

    def _calibrate_scores(self, scores: torch.Tensor) -> torch.Tensor:
        """Apply calibration to raw risk scores"""
        if self.calibrator is None:
            return scores

        # Convert to numpy for calibration
        scores_np = scores.detach().cpu().numpy()
        calibrated = np.zeros_like(scores_np)

        # Apply calibration for each year
        for year in range(scores_np.shape[1]):
            year_key = f"Year{year + 1}"
            if year_key in self.calibrator:
                # Apply calibration transformation
                calibrated[:, year] = self._apply_calibration(
                    scores_np[:, year],
                    self.calibrator[year_key]
                )
            else:
                calibrated[:, year] = scores_np[:, year]

        return torch.from_numpy(calibrated).to(scores.device)

    def _apply_calibration(self, scores: np.ndarray, calibrator_params: Dict) -> np.ndarray:
        """Apply specific calibration transformation"""
        # Simplified calibration - in practice, this would use the full calibration model
        # from the original Sybil implementation
        return scores  # Placeholder for now

    def forward(
        self,
        pixel_values: torch.FloatTensor,
        return_attentions: bool = False,
        return_dict: bool = True,
    ) -> SybilOutput:
        """
        Forward pass of the Sybil model.

        Args:
            pixel_values: (`torch.FloatTensor` of shape `(batch_size, channels, depth, height, width)`):
                Pixel values of CT scan volumes.
            return_attentions: (`bool`, *optional*, defaults to `False`):
                Whether to return attention weights.
            return_dict: (`bool`, *optional*, defaults to `True`):
                Whether to return a `SybilOutput` instead of a plain tuple.

        Returns:
            `SybilOutput` or tuple
        """
        # Extract features using 3D CNN backbone
        features = self.image_encoder(pixel_values)

        # Apply multi-attention pooling
        pool_output = self.pool(features)

        # Apply ReLU and dropout
        hidden = self.relu(pool_output['hidden'])
        hidden = self.dropout(hidden)

        # Predict risk scores
        risk_logits = self.prob_of_failure_layer(hidden)
        risk_scores = torch.sigmoid(risk_logits)

        # Apply calibration if available
        risk_scores = self._calibrate_scores(risk_scores)

        if not return_dict:
            outputs = (risk_scores,)
            if return_attentions:
                outputs = outputs + (pool_output.get('image_attention_1'),
                                   pool_output.get('volume_attention_1'))
            return outputs

        return SybilOutput(
            risk_scores=risk_scores,
            image_attention=pool_output.get('image_attention_1') if return_attentions else None,
            volume_attention=pool_output.get('volume_attention_1') if return_attentions else None,
            hidden_states=hidden if return_attentions else None
        )

    @classmethod
    def from_pretrained_ensemble(
        cls,
        pretrained_model_name_or_path,
        checkpoint_paths: List[str],
        calibrator_path: Optional[str] = None,
        **kwargs
    ):
        """
        Load an ensemble of Sybil models from checkpoints.

        Args:
            pretrained_model_name_or_path: Path to the pretrained model or model identifier.
            checkpoint_paths: List of paths to individual model checkpoints.
            calibrator_path: Path to calibration data.
            **kwargs: Additional keyword arguments for model initialization.

        Returns:
            SybilEnsemble: An ensemble of Sybil models.
        """
        config = kwargs.pop("config", None)
        if config is None:
            config = SybilConfig.from_pretrained(pretrained_model_name_or_path)

        # Load calibrator if provided
        calibrator_data = None
        if calibrator_path:
            import json
            with open(calibrator_path, 'r') as f:
                calibrator_data = json.load(f)
            config.calibrator_data = calibrator_data

        # Create ensemble
        models = []
        for checkpoint_path in checkpoint_paths:
            model = cls(config)
            # Load checkpoint weights
            checkpoint = torch.load(checkpoint_path, map_location='cpu')
            # Remove 'model.' prefix from state dict keys if present
            state_dict = {}
            for k, v in checkpoint['state_dict'].items():
                if k.startswith('model.'):
                    state_dict[k[6:]] = v
                else:
                    state_dict[k] = v

            # Map to new model structure
            mapped_state_dict = model._map_checkpoint_weights(state_dict)
            model.load_state_dict(mapped_state_dict, strict=False)
            models.append(model)

        return SybilEnsemble(models, config)

    def _map_checkpoint_weights(self, state_dict: Dict) -> Dict:
        """Map original Sybil checkpoint weights to new structure"""
        mapped = {}

        # Map encoder weights
        for k, v in state_dict.items():
            if k.startswith('image_encoder'):
                mapped[k] = v
            elif k.startswith('pool'):
                # Map pooling layer weights
                mapped[k] = v
            elif k.startswith('prob_of_failure_layer'):
                # Map final prediction layer
                mapped[k] = v

        return mapped


class SybilEnsemble:
    """Ensemble of Sybil models for improved predictions"""

    def __init__(self, models: List[SybilForRiskPrediction], config: SybilConfig):
        self.models = models
        self.config = config
        self.device = None

    def to(self, device):
        """Move all models to device"""
        self.device = device
        for model in self.models:
            model.to(device)
        return self

    def eval(self):
        """Set all models to evaluation mode"""
        for model in self.models:
            model.eval()

    def __call__(
        self,
        pixel_values: torch.FloatTensor,
        return_attentions: bool = False,
    ) -> SybilOutput:
        """
        Run inference with ensemble voting.

        Args:
            pixel_values: Input CT scan volumes.
            return_attentions: Whether to return attention maps.

        Returns:
            SybilOutput with averaged predictions from all models.
        """
        all_risk_scores = []
        all_image_attentions = []
        all_volume_attentions = []

        with torch.no_grad():
            for model in self.models:
                output = model(
                    pixel_values=pixel_values,
                    return_attentions=return_attentions
                )
                all_risk_scores.append(output.risk_scores)

                if return_attentions:
                    all_image_attentions.append(output.image_attention)
                    all_volume_attentions.append(output.volume_attention)

        # Average predictions
        risk_scores = torch.stack(all_risk_scores).mean(dim=0)

        # Average attentions if requested
        image_attention = None
        volume_attention = None
        if return_attentions:
            image_attention = torch.stack(all_image_attentions).mean(dim=0)
            volume_attention = torch.stack(all_volume_attentions).mean(dim=0)

        return SybilOutput(
            risk_scores=risk_scores,
            image_attention=image_attention,
            volume_attention=volume_attention
        )