File size: 1,657 Bytes
7a8b3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
import os
import argparse
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_name_or_path", type=str, default="bigcode/large-model")
parser.add_argument("--peft_model_path", type=str, default="/")
parser.add_argument("--push_to_hub", action="store_true", default=True)
return parser.parse_args()
def main():
args = get_args()
base_model = AutoModelForCausalLM.from_pretrained(
args.base_model_name_or_path,
return_dict=True,
torch_dtype=torch.float16
)
model = PeftModel.from_pretrained(base_model, args.peft_model_path)
model = model.merge_and_unload()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(args.base_model_name_or_path)
# if args.push_to_hub:
# print(f"Saving to hub ...")
# model.push_to_hub(f"{args.base_model_name_or_path}-merged", use_temp_dir=False, private=True)
# tokenizer.push_to_hub(f"{args.base_model_name_or_path}-merged", use_temp_dir=False, private=True)
# else:
# model.save_pretrained(f"{args.base_model_name_or_path}-merged")
# tokenizer.save_pretrained(f"{args.base_model_name_or_path}-merged")
# print(f"Model saved to {args.base_model_name_or_path}-merged")
model.save_pretrained(f"{args.peft_model_path}-merged")
tokenizer.save_pretrained(f"{args.peft_model_path}-merged")
print(f"Model saved to {args.peft_model_path}-merged")
if __name__ == "__main__" :
main() |