fine_tuned_xlm-roberta_3April

This model is a fine-tuned version of ancs21/xlm-roberta-large-vi-qa on the None dataset. It achieves the following results on the evaluation set:

  • Best F1: 76.1698
  • Loss: 3.3902
  • Exact: 39.0997
  • F1: 56.5332
  • Total: 3821
  • Hasans Exact: 56.1628
  • Hasans F1: 81.2715
  • Hasans Total: 2653
  • Noans Exact: 0.3425
  • Noans F1: 0.3425
  • Noans Total: 1168
  • Best Exact: 60.8479
  • Best Exact Thresh: 0.5169
  • Best F1 Thresh: 0.6480

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Best F1 Validation Loss Exact F1 Total Hasans Exact Hasans F1 Hasans Total Noans Exact Noans F1 Noans Total Best Exact Best Exact Thresh Best F1 Thresh
0.6591 0.24 1000 69.8185 1.2645 36.5611 54.8584 3821 52.6574 79.0101 2653 0.0 0.0 1168 55.2473 0.8809 0.9575
0.576 0.47 2000 72.9418 1.2144 37.6865 55.8902 3821 54.2405 80.4585 2653 0.0856 0.0856 1168 57.2363 0.9300 0.9414
0.5355 0.71 3000 72.9946 1.1680 39.0474 55.7491 3821 56.2382 80.2930 2653 0.0 0.0 1168 58.9375 0.9023 0.9418
0.558 0.95 4000 71.7133 1.2049 38.2361 55.4918 3821 54.7305 79.5832 2653 0.7705 0.7705 1168 57.2887 0.8935 0.9786
0.4136 1.18 5000 71.3382 1.2880 38.7071 55.5727 3821 55.6351 79.9258 2653 0.2568 0.2568 1168 57.3934 0.6526 0.8172
0.4046 1.42 6000 73.7959 1.1542 38.4978 55.9133 3821 55.1451 80.2280 2653 0.6849 0.6849 1168 58.8851 0.8676 0.9130
0.3991 1.66 7000 73.8805 1.1187 38.9950 56.2014 3821 56.1628 80.9445 2653 0.0 0.0 1168 59.5394 0.8720 0.9676
0.4062 1.9 8000 74.6655 1.0558 38.3146 55.9064 3821 55.1451 80.4818 2653 0.0856 0.0856 1168 59.4609 0.7752 0.8960
0.3246 2.13 9000 74.3864 1.3330 39.5708 56.4795 3821 56.6528 81.0058 2653 0.7705 0.7705 1168 59.9058 0.7984 0.9832
0.3016 2.37 10000 73.8462 1.3389 39.0212 56.2669 3821 56.2005 81.0388 2653 0.0 0.0 1168 59.1468 0.7780 0.8369
0.297 2.61 11000 75.1653 1.3418 39.6493 56.8063 3821 57.1052 81.8156 2653 0.0 0.0 1168 59.9320 0.8351 0.9593
0.291 2.84 12000 74.9741 1.3439 39.0997 56.5274 3821 56.3136 81.4139 2653 0.0 0.0 1168 59.3562 0.9742 0.9970
0.251 3.08 13000 75.3242 1.7083 39.5446 56.7699 3821 56.3890 81.1978 2653 1.2842 1.2842 1168 60.5339 0.9559 0.9798
0.2022 3.32 14000 75.0498 1.5213 38.7857 56.1680 3821 55.8613 80.8963 2653 0.0 0.0 1168 59.8273 0.9108 0.9803
0.2129 3.55 15000 75.1471 1.5169 38.7857 56.1669 3821 55.8236 80.8570 2653 0.0856 0.0856 1168 59.3300 0.9468 0.9995
0.2071 3.79 16000 74.6861 1.4170 39.5185 56.7831 3821 56.8790 81.7445 2653 0.0856 0.0856 1168 60.0105 0.7001 0.8805
0.2052 4.03 17000 75.7601 1.9237 39.4661 56.6037 3821 56.8036 81.4862 2653 0.0856 0.0856 1168 60.5339 0.5681 0.9653
0.1407 4.26 18000 75.5813 1.8430 38.3407 56.0982 3821 55.2205 80.7957 2653 0.0 0.0 1168 60.0105 0.5421 0.9222
0.153 4.5 19000 75.1837 1.7648 38.4716 56.0839 3821 55.3713 80.7376 2653 0.0856 0.0856 1168 60.0628 0.6387 0.9745
0.1538 4.74 20000 75.0762 1.5864 37.8697 55.5910 3821 54.5043 80.0276 2653 0.0856 0.0856 1168 59.4609 0.6394 0.9597
0.1569 4.97 21000 74.7077 1.6717 38.1837 55.8677 3821 54.9943 80.4638 2653 0.0 0.0 1168 58.8589 0.5886 0.8916
0.1091 5.21 22000 75.6475 2.0903 38.6548 56.2204 3821 55.6351 80.9341 2653 0.0856 0.0856 1168 60.1152 0.6634 0.8348
0.1107 5.45 23000 75.3914 2.2899 39.2829 56.6296 3821 56.2382 81.2220 2653 0.7705 0.7705 1168 59.6964 0.5812 0.9192
0.1147 5.69 24000 75.9043 1.9436 38.9950 56.4320 3821 56.1251 81.2388 2653 0.0856 0.0856 1168 60.5077 0.7035 0.9620
0.1097 5.92 25000 76.0467 1.8455 38.3669 55.8887 3821 55.2582 80.4940 2653 0.0 0.0 1168 60.3769 0.7807 0.9827
0.0844 6.16 26000 75.6935 2.5688 38.6810 56.3070 3821 55.6728 81.0588 2653 0.0856 0.0856 1168 59.8273 0.6209 0.9985
0.0774 6.4 27000 75.6526 2.5920 38.5763 56.1577 3821 55.5597 80.8815 2653 0.0 0.0 1168 60.0628 0.5364 0.9746
0.08 6.63 28000 75.5989 2.6070 38.9427 56.6394 3821 56.0498 81.5375 2653 0.0856 0.0856 1168 59.9581 0.5102 0.8782
0.0791 6.87 29000 75.9065 2.4939 38.6810 56.7529 3821 55.5974 81.6256 2653 0.2568 0.2568 1168 60.0890 0.7359 0.9913
0.0667 7.11 30000 75.9315 2.8027 38.6810 56.6293 3821 55.5974 81.4476 2653 0.2568 0.2568 1168 59.8011 0.6325 0.9909
0.0504 7.34 31000 75.4506 2.9797 39.0735 56.6964 3821 56.2382 81.6196 2653 0.0856 0.0856 1168 60.1413 0.5311 0.9996
0.0485 7.58 32000 75.7607 2.8116 38.7333 56.4275 3821 55.7105 81.1947 2653 0.1712 0.1712 1168 60.1413 0.5366 0.9183
0.0487 7.82 33000 75.9794 2.9559 39.1259 56.5935 3821 56.2005 81.3584 2653 0.3425 0.3425 1168 60.6386 0.4966 0.9163
0.0496 8.05 34000 75.8458 2.9892 39.2044 56.5961 3821 56.2382 81.2868 2653 0.5137 0.5137 1168 60.4292 0.4952 0.9726
0.0378 8.29 35000 75.5534 3.0456 39.0212 56.4687 3821 55.9744 81.1033 2653 0.5137 0.5137 1168 60.1152 0.4984 0.9850
0.0322 8.53 36000 75.5716 3.2717 38.9689 56.4812 3821 55.9367 81.1589 2653 0.4281 0.4281 1168 60.2460 0.5405 0.5620
0.0333 8.77 37000 76.1348 3.2260 39.0997 56.6567 3821 56.0121 81.2986 2653 0.6849 0.6849 1168 60.5601 0.6449 0.9261
0.0298 9.0 38000 76.4711 3.1900 39.3353 56.7593 3821 56.5021 81.5972 2653 0.3425 0.3425 1168 60.9526 0.5191 0.9665
0.0181 9.24 39000 76.4433 3.4204 39.3353 56.7658 3821 56.4644 81.5688 2653 0.4281 0.4281 1168 61.1882 0.5781 0.9364
0.0188 9.48 40000 75.8578 3.4566 39.2567 56.5759 3821 56.3890 81.3330 2653 0.3425 0.3425 1168 60.6909 0.4253 0.7260
0.0226 9.71 41000 76.2686 3.3418 39.4138 56.6183 3821 56.6528 81.4317 2653 0.2568 0.2568 1168 61.1882 0.5242 0.9950
0.019 9.95 42000 76.1698 3.3902 39.0997 56.5332 3821 56.1628 81.2715 2653 0.3425 0.3425 1168 60.8479 0.5169 0.6480

Framework versions

  • Transformers 4.37.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
559M params
Tensor type
F32
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Kudod/fine_tuned_xlm-roberta_3April

Finetuned
(1)
this model