File size: 2,205 Bytes
edbbaaf 97ebcdb edbbaaf 83fe4a1 e641757 edbbaaf 4fea786 e641757 b6d5d90 e641757 b6d5d90 e641757 b6d5d90 e641757 b6d5d90 edbbaaf 4fea786 edbbaaf 97ebcdb e641757 b6d5d90 edbbaaf 775c3c5 02d0c30 edbbaaf e641757 edbbaaf 2f2f50f b6d5d90 edbbaaf 775c3c5 97ebcdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: train
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.9860607282009942
- name: Recall
type: recall
value: 0.9693364297742606
- name: F1
type: f1
value: 0.9776270584382788
- name: Accuracy
type: accuracy
value: 0.9882459717748076
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bert-NER
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0372
- Precision: 0.9861
- Recall: 0.9693
- F1: 0.9776
- Accuracy: 0.9882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0461 | 1.0 | 858 | 0.0450 | 0.9853 | 0.9602 | 0.9725 | 0.9859 |
| 0.0408 | 2.0 | 1716 | 0.0400 | 0.9836 | 0.9679 | 0.9757 | 0.9873 |
| 0.0391 | 3.0 | 2574 | 0.0372 | 0.9861 | 0.9693 | 0.9776 | 0.9882 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|