End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,11 +79,9 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.0468 | 2.33 | 2000 | 0.0471 | 0.9776 | 0.9653 | 0.9715 | 0.9853 |
|
86 |
-
| 0.0461 | 2.91 | 2500 | 0.0457 | 0.9791 | 0.9648 | 0.9719 | 0.9855 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9860607282009942
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9693364297742606
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9776270584382788
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9882459717748076
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0372
|
48 |
+
- Precision: 0.9861
|
49 |
+
- Recall: 0.9693
|
50 |
+
- F1: 0.9776
|
51 |
+
- Accuracy: 0.9882
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0461 | 1.0 | 858 | 0.0450 | 0.9853 | 0.9602 | 0.9725 | 0.9859 |
|
83 |
+
| 0.0408 | 2.0 | 1716 | 0.0400 | 0.9836 | 0.9679 | 0.9757 | 0.9873 |
|
84 |
+
| 0.0391 | 3.0 | 2574 | 0.0372 | 0.9861 | 0.9693 | 0.9776 | 0.9882 |
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|