File size: 1,896 Bytes
41c5279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-beans-demo-v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans-demo-v5
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the diabetic-retinopathy-classification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7260
- Accuracy: 0.7263
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9235 | 0.47 | 100 | 0.8972 | 0.6493 |
| 0.9253 | 0.95 | 200 | 0.9151 | 0.6635 |
| 0.8371 | 1.42 | 300 | 0.8071 | 0.6931 |
| 0.7355 | 1.9 | 400 | 0.7563 | 0.7073 |
| 0.6532 | 2.37 | 500 | 0.7543 | 0.6896 |
| 0.5982 | 2.84 | 600 | 0.7260 | 0.7263 |
| 0.4276 | 3.32 | 700 | 0.7346 | 0.7239 |
| 0.4935 | 3.79 | 800 | 0.7490 | 0.7133 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|