File size: 6,428 Bytes
09ffb66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
library_name: transformers
license: mit
base_model: openai-community/gpt2
tags:
- trl
- orpo
- generated_from_trainer
datasets:
- piqa
model-index:
- name: HW2-orpo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HW2-orpo
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the piqa dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8617
- Rewards/chosen: -0.3716
- Rewards/rejected: -0.3885
- Rewards/accuracies: 0.6390
- Rewards/margins: 0.0170
- Logps/rejected: -3.8851
- Logps/chosen: -3.7156
- Logits/rejected: -3.3968
- Logits/chosen: -3.5059
- Nll Loss: 3.7885
- Log Odds Ratio: -0.7324
- Log Odds Chosen: 0.1830
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 3.5511 | 0.2758 | 500 | 3.4162 | -0.3146 | -0.3224 | 0.6303 | 0.0078 | -3.2238 | -3.1457 | -12.1919 | -12.3316 | 3.3464 | -0.6978 | 0.0837 |
| 3.3852 | 0.5517 | 1000 | 3.3345 | -0.3060 | -0.3152 | 0.6421 | 0.0092 | -3.1517 | -3.0602 | -3.3351 | -3.5024 | 3.2656 | -0.6894 | 0.0984 |
| 3.2734 | 0.8275 | 1500 | 3.2903 | -0.3011 | -0.3101 | 0.6309 | 0.0090 | -3.1013 | -3.0113 | -5.6602 | -5.7320 | 3.2211 | -0.6920 | 0.0975 |
| 3.104 | 1.1034 | 2000 | 3.2933 | -0.3021 | -0.3118 | 0.6371 | 0.0097 | -3.1182 | -3.0211 | -0.2253 | -0.3135 | 3.2237 | -0.6956 | 0.1062 |
| 2.8138 | 1.3792 | 2500 | 3.2816 | -0.3018 | -0.3125 | 0.6464 | 0.0107 | -3.1253 | -3.0179 | 1.3216 | 1.2346 | 3.2125 | -0.6916 | 0.1172 |
| 2.8178 | 1.6551 | 3000 | 3.2660 | -0.2998 | -0.3108 | 0.6383 | 0.0109 | -3.1080 | -2.9985 | -0.7475 | -0.8064 | 3.1968 | -0.6923 | 0.1204 |
| 2.8122 | 1.9309 | 3500 | 3.2586 | -0.2992 | -0.3104 | 0.6433 | 0.0112 | -3.1039 | -2.9922 | -2.8285 | -2.9509 | 3.1893 | -0.6925 | 0.1228 |
| 2.4931 | 2.2067 | 4000 | 3.3765 | -0.3130 | -0.3256 | 0.6427 | 0.0127 | -3.2563 | -3.1296 | 1.6707 | 1.5380 | 3.3063 | -0.7020 | 0.1392 |
| 2.3999 | 2.4826 | 4500 | 3.4109 | -0.3174 | -0.3298 | 0.6402 | 0.0125 | -3.2982 | -3.1736 | 1.4695 | 1.2634 | 3.3402 | -0.7069 | 0.1373 |
| 2.4254 | 2.7584 | 5000 | 3.3882 | -0.3150 | -0.3278 | 0.6439 | 0.0128 | -3.2781 | -3.1497 | 2.1282 | 1.9044 | 3.3180 | -0.7018 | 0.1416 |
| 2.373 | 3.0343 | 5500 | 3.5698 | -0.3370 | -0.3515 | 0.6408 | 0.0145 | -3.5149 | -3.3698 | 3.7150 | 3.6601 | 3.4983 | -0.7147 | 0.1595 |
| 2.0541 | 3.3101 | 6000 | 3.6256 | -0.3430 | -0.3570 | 0.6284 | 0.0140 | -3.5700 | -3.4302 | 1.1269 | 0.9714 | 3.5532 | -0.7240 | 0.1540 |
| 2.0641 | 3.5860 | 6500 | 3.6157 | -0.3425 | -0.3577 | 0.6445 | 0.0152 | -3.5771 | -3.4246 | -0.6703 | -0.8165 | 3.5439 | -0.7178 | 0.1665 |
| 2.0747 | 3.8618 | 7000 | 3.6335 | -0.3447 | -0.3598 | 0.6402 | 0.0151 | -3.5983 | -3.4474 | -0.1967 | -0.3291 | 3.5616 | -0.7193 | 0.1640 |
| 1.9377 | 4.1376 | 7500 | 3.8286 | -0.3671 | -0.3838 | 0.6445 | 0.0167 | -3.8381 | -3.6712 | -2.6871 | -2.8058 | 3.7557 | -0.7288 | 0.1800 |
| 1.8001 | 4.4135 | 8000 | 3.8629 | -0.3715 | -0.3882 | 0.6414 | 0.0168 | -3.8822 | -3.7146 | -3.4193 | -3.5370 | 3.7898 | -0.7315 | 0.1810 |
| 1.81 | 4.6893 | 8500 | 3.8574 | -0.3711 | -0.3879 | 0.6396 | 0.0168 | -3.8789 | -3.7110 | -4.2176 | -4.3406 | 3.7842 | -0.7321 | 0.1814 |
| 1.8108 | 4.9652 | 9000 | 3.8617 | -0.3716 | -0.3885 | 0.6390 | 0.0170 | -3.8851 | -3.7156 | -3.3968 | -3.5059 | 3.7885 | -0.7324 | 0.1830 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
|