|
--- |
|
license: other |
|
datasets: |
|
- totally-not-an-llm/EverythingLM-data-V3 |
|
license_name: yi-license |
|
license_link: LICENSE |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Deacon-34b-Adapter |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 64.76 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.57 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.28 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 56.24 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 82.95 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 61.18 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
|
|
The perfect organism. |
|
|
|
An adapter for KnutJaegersberg/Yi-34B-Llamafied. 5 epochs with NEFTune. |
|
|
|
Prompt Example: |
|
``` |
|
### System: |
|
|
|
You are an AI assistant. User will give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps. |
|
|
|
### Instruction: |
|
|
|
How do you fine tune a large language model? |
|
|
|
### Response: |
|
``` |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63732ebbbd81fae2b3aaf3fb/8KYMW1KGzyE19GWxSTG7m.png) |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_KnutJaegersberg__Deacon-34b-Adapter) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |71.16| |
|
|AI2 Reasoning Challenge (25-Shot)|64.76| |
|
|HellaSwag (10-Shot) |85.57| |
|
|MMLU (5-Shot) |76.28| |
|
|TruthfulQA (0-shot) |56.24| |
|
|Winogrande (5-shot) |82.95| |
|
|GSM8k (5-shot) |61.18| |
|
|
|
|