File size: 4,011 Bytes
384af6a ca504ee 4a90480 ca504ee 4a90480 384af6a ca504ee 4a90480 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
license: other
datasets:
- totally-not-an-llm/EverythingLM-data-V3
license_name: yi-license
license_link: LICENSE
pipeline_tag: text-generation
model-index:
- name: Deacon-34b-Adapter
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.76
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.24
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.18
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-Adapter
name: Open LLM Leaderboard
---
The perfect organism.
An adapter for KnutJaegersberg/Yi-34B-Llamafied. 5 epochs with NEFTune.
Prompt Example:
```
### System:
You are an AI assistant. User will give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.
### Instruction:
How do you fine tune a large language model?
### Response:
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63732ebbbd81fae2b3aaf3fb/8KYMW1KGzyE19GWxSTG7m.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_KnutJaegersberg__Deacon-34b-Adapter)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.16|
|AI2 Reasoning Challenge (25-Shot)|64.76|
|HellaSwag (10-Shot) |85.57|
|MMLU (5-Shot) |76.28|
|TruthfulQA (0-shot) |56.24|
|Winogrande (5-shot) |82.95|
|GSM8k (5-shot) |61.18|
|