Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

ItaLegalEmb_v2 ๐Ÿ‡ฎ๐Ÿ‡น

ItaLegalEmb_v2 is the second version of the ItaLegalEmb family embedding models. As his predecessor, it is a specialized embedding model specifically trained on a corpus of Italian legal documents.

ItalegalEmb_v2 is based on BAAI/bge-m3, a SOTA embedding model with outstanding multilingual skills.

Features: Dimensions: 1024 Sequence Lenght: 8192

Evaluation Results

In our evaluations on the specific domain, ItaLegalEmb_v2 scores 93%, while OpenAI stops at 79% and ItaLegalEmb at 85%.

As llama.cpp team has just released (early August 2024) a version which supports XLMRoberta embedding models (ItaLegalEmb_v2 belongs to this), a gguf Q8 version of the model is also included here ๐Ÿ˜‰.

This is a sentence-transformers model: It can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

DataLoader:

torch.utils.data.dataloader.DataLoader of length 190 with parameters:

{'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 3,
    "evaluation_steps": 50,
    "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 57,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors

@misc{ItaLegalEmb,
title = {Kleva-ai/ItaLegalEmb_v2: An embedding model fine-tuned on Italian legal documents.},
author = {Obiactum},
year = {2024},
publisher = {Kleva-ai},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/Kleva-ai/ItaLegalEmb_v2}},
}

Downloads last month
4
Safetensors
Model size
568M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.