metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- medmnist-v2
metrics:
- accuracy
- f1
model-index:
- name: ViT_bloodmnist_std_45
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: medmnist-v2
type: medmnist-v2
config: bloodmnist
split: validation
args: bloodmnist
metrics:
- name: Accuracy
type: accuracy
value: 0.9064600993861444
- name: F1
type: f1
value: 0.8909233140229111
ViT_bloodmnist_std_45
This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2659
- Accuracy: 0.9065
- F1: 0.8909
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6113 | 0.0595 | 200 | 0.8908 | 0.6846 | 0.5917 |
0.3578 | 0.1189 | 400 | 0.5958 | 0.7956 | 0.7548 |
0.3118 | 0.1784 | 600 | 0.5688 | 0.7810 | 0.7132 |
0.2815 | 0.2378 | 800 | 0.5227 | 0.7961 | 0.7645 |
0.266 | 0.2973 | 1000 | 0.6554 | 0.7687 | 0.7229 |
0.2353 | 0.3567 | 1200 | 0.3328 | 0.8838 | 0.8615 |
0.2297 | 0.4162 | 1400 | 0.4696 | 0.8592 | 0.7990 |
0.2267 | 0.4756 | 1600 | 0.4362 | 0.8493 | 0.8117 |
0.2266 | 0.5351 | 1800 | 0.3286 | 0.8838 | 0.8407 |
0.2047 | 0.5945 | 2000 | 0.3614 | 0.8697 | 0.8382 |
0.1948 | 0.6540 | 2200 | 0.3144 | 0.8843 | 0.8546 |
0.1953 | 0.7134 | 2400 | 0.3805 | 0.8657 | 0.8180 |
0.1728 | 0.7729 | 2600 | 0.3364 | 0.8820 | 0.8339 |
0.1658 | 0.8323 | 2800 | 0.2873 | 0.8978 | 0.8743 |
0.1594 | 0.8918 | 3000 | 0.3062 | 0.8914 | 0.8580 |
0.1649 | 0.9512 | 3200 | 0.3313 | 0.8867 | 0.8577 |
0.1508 | 1.0107 | 3400 | 0.2117 | 0.9217 | 0.9133 |
0.1062 | 1.0702 | 3600 | 0.2978 | 0.8919 | 0.8756 |
0.1091 | 1.1296 | 3800 | 0.2832 | 0.9019 | 0.8831 |
0.0993 | 1.1891 | 4000 | 0.3275 | 0.8943 | 0.8718 |
0.1001 | 1.2485 | 4200 | 0.3420 | 0.8896 | 0.8568 |
0.1092 | 1.3080 | 4400 | 0.2594 | 0.9130 | 0.8909 |
0.092 | 1.3674 | 4600 | 0.3181 | 0.8966 | 0.8753 |
0.1036 | 1.4269 | 4800 | 0.2721 | 0.9048 | 0.8852 |
0.0896 | 1.4863 | 5000 | 0.3795 | 0.8820 | 0.8617 |
0.0904 | 1.5458 | 5200 | 0.2382 | 0.9171 | 0.8980 |
0.0864 | 1.6052 | 5400 | 0.3845 | 0.8814 | 0.8499 |
0.0809 | 1.6647 | 5600 | 0.3189 | 0.8984 | 0.8758 |
0.0764 | 1.7241 | 5800 | 0.3952 | 0.8843 | 0.8522 |
0.0796 | 1.7836 | 6000 | 0.3656 | 0.8867 | 0.8460 |
0.0695 | 1.8430 | 6200 | 0.3266 | 0.8925 | 0.8597 |
0.0682 | 1.9025 | 6400 | 0.3247 | 0.8960 | 0.8647 |
0.06 | 1.9620 | 6600 | 0.2349 | 0.9223 | 0.9055 |
0.0498 | 2.0214 | 6800 | 0.2578 | 0.9176 | 0.8952 |
0.0296 | 2.0809 | 7000 | 0.2592 | 0.9211 | 0.9070 |
0.0251 | 2.1403 | 7200 | 0.3249 | 0.9048 | 0.8797 |
0.02 | 2.1998 | 7400 | 0.2977 | 0.9165 | 0.8973 |
0.0274 | 2.2592 | 7600 | 0.3411 | 0.9013 | 0.8730 |
0.0241 | 2.3187 | 7800 | 0.3916 | 0.9013 | 0.8752 |
0.0253 | 2.3781 | 8000 | 0.2919 | 0.9136 | 0.8939 |
0.0197 | 2.4376 | 8200 | 0.3294 | 0.9077 | 0.8835 |
0.0209 | 2.4970 | 8400 | 0.3709 | 0.8966 | 0.8652 |
0.0175 | 2.5565 | 8600 | 0.3639 | 0.9001 | 0.8733 |
0.0191 | 2.6159 | 8800 | 0.3706 | 0.9048 | 0.8790 |
0.0167 | 2.6754 | 9000 | 0.3120 | 0.9171 | 0.8993 |
0.0224 | 2.7348 | 9200 | 0.3493 | 0.9048 | 0.8799 |
0.015 | 2.7943 | 9400 | 0.3398 | 0.9130 | 0.8889 |
0.0155 | 2.8537 | 9600 | 0.3707 | 0.9036 | 0.8758 |
0.0129 | 2.9132 | 9800 | 0.3467 | 0.9118 | 0.8909 |
0.0126 | 2.9727 | 10000 | 0.3470 | 0.9095 | 0.8874 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0